Alexander Tobias Ysbæk-Nielsen, Rubina Fray Gogolu , Maya Tranter , Zacharias Kalle Obel
{"title":"Structural brain differences in patients with schizophrenia spectrum disorders with and without auditory verbal hallucinations","authors":"Alexander Tobias Ysbæk-Nielsen, Rubina Fray Gogolu , Maya Tranter , Zacharias Kalle Obel","doi":"10.1016/j.pscychresns.2024.111863","DOIUrl":null,"url":null,"abstract":"<div><p>Schizophrenia spectrum disorders (SSD) are debilitating, with auditory verbal hallucinations (AVHs) being a core characteristic. While gray matter volume (GMV) reductions are commonly replicated in SSD populations, the neural basis of AVHs remains unclear. Using previously published data, this study comprises two main analyses, one of GMV dissimilarities between SSD and healthy controls (HC), and one of GMV differences specifically associated with AVHs. Structural brain images from 71 adults with (<em>n</em> = 46) and without (<em>n</em> = 25) SSD were employed. Group differences in GMVs of the cortex, anterior cingulate (ACC), superior temporal gyrus (STG), hippocampi, and thalami were assessed. Additionally, volumes of left Heschl's gyrus (HG) in a subgroup experiencing AVHs (AVH+, <em>n</em> = 23) were compared with those of patients who did not (AVH-, <em>n</em> = 23). SSD patients displayed reduced GMVs of the cortex, ACC, STG, hippocampi, and thalami compared to HC. AVH+ had significantly reduced left HG volume when compared to AVH-. Finally, a right-lateralized ventral prefrontal cluster was found to be uniquely associated with AVH severity. This study corroborates previous findings of GMV reductions in SSD cohorts. Chiefly, our secondary analysis suggests that AVHs are associated with language areas and their contralateral homologues.</p></div>","PeriodicalId":20776,"journal":{"name":"Psychiatry Research: Neuroimaging","volume":"344 ","pages":"Article 111863"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0925492724000866/pdfft?md5=d51a576d22f8508c28f313b62490e1e6&pid=1-s2.0-S0925492724000866-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Psychiatry Research: Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925492724000866","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Schizophrenia spectrum disorders (SSD) are debilitating, with auditory verbal hallucinations (AVHs) being a core characteristic. While gray matter volume (GMV) reductions are commonly replicated in SSD populations, the neural basis of AVHs remains unclear. Using previously published data, this study comprises two main analyses, one of GMV dissimilarities between SSD and healthy controls (HC), and one of GMV differences specifically associated with AVHs. Structural brain images from 71 adults with (n = 46) and without (n = 25) SSD were employed. Group differences in GMVs of the cortex, anterior cingulate (ACC), superior temporal gyrus (STG), hippocampi, and thalami were assessed. Additionally, volumes of left Heschl's gyrus (HG) in a subgroup experiencing AVHs (AVH+, n = 23) were compared with those of patients who did not (AVH-, n = 23). SSD patients displayed reduced GMVs of the cortex, ACC, STG, hippocampi, and thalami compared to HC. AVH+ had significantly reduced left HG volume when compared to AVH-. Finally, a right-lateralized ventral prefrontal cluster was found to be uniquely associated with AVH severity. This study corroborates previous findings of GMV reductions in SSD cohorts. Chiefly, our secondary analysis suggests that AVHs are associated with language areas and their contralateral homologues.
期刊介绍:
The Neuroimaging section of Psychiatry Research publishes manuscripts on positron emission tomography, magnetic resonance imaging, computerized electroencephalographic topography, regional cerebral blood flow, computed tomography, magnetoencephalography, autoradiography, post-mortem regional analyses, and other imaging techniques. Reports concerning results in psychiatric disorders, dementias, and the effects of behaviorial tasks and pharmacological treatments are featured. We also invite manuscripts on the methods of obtaining images and computer processing of the images themselves. Selected case reports are also published.