The chemistry of electrical signaling in sodium channels from bacteria and beyond

IF 6.6 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
William A. Catterall , Tamer M. Gamal El-Din , Goragot Wisedchaisri
{"title":"The chemistry of electrical signaling in sodium channels from bacteria and beyond","authors":"William A. Catterall ,&nbsp;Tamer M. Gamal El-Din ,&nbsp;Goragot Wisedchaisri","doi":"10.1016/j.chembiol.2024.07.010","DOIUrl":null,"url":null,"abstract":"<div><p>Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature’s simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.</p></div>","PeriodicalId":265,"journal":{"name":"Cell Chemical Biology","volume":"31 8","pages":"Pages 1405-1421"},"PeriodicalIF":6.6000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S245194562400312X/pdfft?md5=0c34706ac158a70d52d3dd2d116ee049&pid=1-s2.0-S245194562400312X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245194562400312X","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrical signaling is essential for all fast processes in biology, but its molecular mechanisms have been uncertain. This review article focuses on studies of bacterial sodium channels in order to home in on the essential molecular and chemical mechanisms underlying transmembrane ion conductance and voltage-dependent gating without the overlay of complex protein interactions and regulatory mechanisms in mammalian sodium channels. This minimalist approach has yielded a nearly complete picture of sodium channel function at the atomic level that are mostly conserved in mammalian sodium channels, including sodium selectivity and conductance, voltage sensing and activation, electromechanical coupling to pore opening and closing, slow inactivation, and pathogenic dysfunction in a debilitating channelopathy. Future studies of nature’s simplest sodium channels may continue to yield key insights into the fundamental molecular and chemical principles of their function and further elucidate the chemical basis of electrical signaling.

Abstract Image

细菌等钠离子通道中的电信号化学反应
电信号对生物学中的所有快速过程都至关重要,但其分子机制却一直不确定。这篇综述文章侧重于对细菌钠通道的研究,以便深入探讨跨膜离子传导和电压依赖性门控的基本分子和化学机制,而不涉及哺乳动物钠通道中复杂的蛋白质相互作用和调控机制。这种简约方法在原子水平上几乎完整地描述了哺乳动物钠通道的功能,其中包括钠的选择性和传导性、电压感应和激活、与孔打开和关闭的机电耦合、缓慢失活以及使人衰弱的通道病变中的致病功能障碍。未来对自然界最简单的钠通道的研究可能会继续深入了解其功能的基本分子和化学原理,并进一步阐明电信号的化学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Chemical Biology
Cell Chemical Biology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
14.70
自引率
2.30%
发文量
143
期刊介绍: Cell Chemical Biology, a Cell Press journal established in 1994 as Chemistry & Biology, focuses on publishing crucial advances in chemical biology research with broad appeal to our diverse community, spanning basic scientists to clinicians. Pioneering investigations at the chemistry-biology interface, the journal fosters collaboration between these disciplines. We encourage submissions providing significant conceptual advancements of broad interest across chemical, biological, clinical, and related fields. Particularly sought are articles utilizing chemical tools to perturb, visualize, and measure biological systems, offering unique insights into molecular mechanisms, disease biology, and therapeutics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信