OBHSA, a novel selective estrogen receptor degrader, overcomes tamoxifen resistance through cell cycle arrest and unfolded protein response-mediated apoptosis in breast cancer
{"title":"OBHSA, a novel selective estrogen receptor degrader, overcomes tamoxifen resistance through cell cycle arrest and unfolded protein response-mediated apoptosis in breast cancer","authors":"Rong Shen , Jiawei Zhou , Lilan Xin , Hai-Bing Zhou , Jian Huang","doi":"10.1016/j.jsbmb.2024.106599","DOIUrl":null,"url":null,"abstract":"<div><p>Breast cancer (BC) is a highly heterogeneous tumor that has surpassed lung cancer as the most frequently diagnosed cancer in women. In clinical practice,the primary approach for treating estrogen receptor alpha (ERα)-positive BC is through endocrine therapy, which involves targeting the ERα using medications like tamoxifen and fulvestrant. However, the problem of de novo or acquired resistance poses a significant clinical challenge, emphasizing the critical need for the development of novel therapeutic strategies. In this regard, we have successfully designed and developed a novel selective estrogen receptor degrader (SERD) called OBHSA, which specifically targets and degrades ERα, demonstrating remarkable efficacy. Our findings revealed the effectiveness of OBHSA in inhibiting the proliferation of various BC cells, including both tamoxifen-sensitive and tamoxifen-resistant BC cells, indicating its great potential to overcome endocrine resistance. In terms of mechanism, we discovered that OBHSA overcame tamoxifen resistance through two distinct pathways. Firstly, OBHSA degraded cyclin D1 in an ERα-dependent manner, thereby blocking the cell cycle. Secondly, OBHSA induced an elevation in intracellular reactive oxygen species, triggering an excessive activation of the unfolded protein response (UPR) and ultimately leading to apoptotic cell death. In summary, our finding demonstrated that OBHSA exerts anti-tumor effects by inducing cell cycle arrest and UPR-mediated apoptosis. These findings hold promise for the development of novel therapeutic drugs targeting endocrine-resistant BC.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007602400147X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer (BC) is a highly heterogeneous tumor that has surpassed lung cancer as the most frequently diagnosed cancer in women. In clinical practice,the primary approach for treating estrogen receptor alpha (ERα)-positive BC is through endocrine therapy, which involves targeting the ERα using medications like tamoxifen and fulvestrant. However, the problem of de novo or acquired resistance poses a significant clinical challenge, emphasizing the critical need for the development of novel therapeutic strategies. In this regard, we have successfully designed and developed a novel selective estrogen receptor degrader (SERD) called OBHSA, which specifically targets and degrades ERα, demonstrating remarkable efficacy. Our findings revealed the effectiveness of OBHSA in inhibiting the proliferation of various BC cells, including both tamoxifen-sensitive and tamoxifen-resistant BC cells, indicating its great potential to overcome endocrine resistance. In terms of mechanism, we discovered that OBHSA overcame tamoxifen resistance through two distinct pathways. Firstly, OBHSA degraded cyclin D1 in an ERα-dependent manner, thereby blocking the cell cycle. Secondly, OBHSA induced an elevation in intracellular reactive oxygen species, triggering an excessive activation of the unfolded protein response (UPR) and ultimately leading to apoptotic cell death. In summary, our finding demonstrated that OBHSA exerts anti-tumor effects by inducing cell cycle arrest and UPR-mediated apoptosis. These findings hold promise for the development of novel therapeutic drugs targeting endocrine-resistant BC.