Synovium friction properties are influenced by proteoglycan content

IF 2.4 3区 医学 Q3 BIOPHYSICS
{"title":"Synovium friction properties are influenced by proteoglycan content","authors":"","doi":"10.1016/j.jbiomech.2024.112272","DOIUrl":null,"url":null,"abstract":"<div><p>The synovium plays a crucial role in diarthrodial joint health, and its study has garnered appreciation as synovitis has been linked to osteoarthritis symptoms and progression. Quantitative synovium structure–function data, however, remain sparse. In the present study, we hypothesized that tissue glycosaminoglycan (GAG) content contributes to the low friction properties of the synovium. Bovine and human synovium tribological properties were evaluated using a custom friction testing device in two different cases: (1) proteoglycan depletion to isolate the influence of tissue GAGs in the synovium friction response and (2) interleukin-1 (IL) treatment to observe inflammation-induced structural and functional changes. Following proteoglycan depletion, synovium friction coefficients increased while GAG content decreased. Conversely, synovium explants treated with the proinflammatory cytokine IL exhibited elevated GAG concentrations and decreased friction coefficients. For the first time, a relationship between synovium friction coefficient and GAG concentration is demonstrated. The study of synovium tribology is necessary to fully understand the mechanical environment of the healthy and diseased joint.</p></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024003506","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The synovium plays a crucial role in diarthrodial joint health, and its study has garnered appreciation as synovitis has been linked to osteoarthritis symptoms and progression. Quantitative synovium structure–function data, however, remain sparse. In the present study, we hypothesized that tissue glycosaminoglycan (GAG) content contributes to the low friction properties of the synovium. Bovine and human synovium tribological properties were evaluated using a custom friction testing device in two different cases: (1) proteoglycan depletion to isolate the influence of tissue GAGs in the synovium friction response and (2) interleukin-1 (IL) treatment to observe inflammation-induced structural and functional changes. Following proteoglycan depletion, synovium friction coefficients increased while GAG content decreased. Conversely, synovium explants treated with the proinflammatory cytokine IL exhibited elevated GAG concentrations and decreased friction coefficients. For the first time, a relationship between synovium friction coefficient and GAG concentration is demonstrated. The study of synovium tribology is necessary to fully understand the mechanical environment of the healthy and diseased joint.

滑膜摩擦特性受蛋白多糖含量的影响。
滑膜在二关节健康中起着至关重要的作用,由于滑膜炎与骨关节炎的症状和进展有关,因此对滑膜的研究备受关注。然而,滑膜结构与功能的定量数据仍然很少。在本研究中,我们假设组织中的糖胺聚糖(GAG)含量有助于滑膜的低摩擦特性。我们在两种不同情况下使用定制的摩擦测试装置评估了牛和人滑膜的摩擦学特性:(1)消耗蛋白多糖以分离组织 GAG 在滑膜摩擦反应中的影响;(2)白细胞介素-1(IL)处理以观察炎症引起的结构和功能变化。蛋白多糖耗竭后,滑膜摩擦系数增加,而 GAG 含量下降。相反,用促炎细胞因子IL处理的滑膜外植体则表现出GAG浓度升高和摩擦系数降低。这是首次证明滑膜摩擦系数与 GAG 浓度之间的关系。滑膜摩擦学研究对于全面了解健康和患病关节的机械环境非常必要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信