Bacterial Extracellular Vesicles: Potential Therapeutic Applications, Challenges, and Future Prospects

IF 3.5 4区 生物学 Q2 MICROBIOLOGY
Humaira, Irfan Ahmad, Hafiz Abdullah Shakir, Muhammad Khan, Marcelo Franco, Muhammad Irfan
{"title":"Bacterial Extracellular Vesicles: Potential Therapeutic Applications, Challenges, and Future Prospects","authors":"Humaira,&nbsp;Irfan Ahmad,&nbsp;Hafiz Abdullah Shakir,&nbsp;Muhammad Khan,&nbsp;Marcelo Franco,&nbsp;Muhammad Irfan","doi":"10.1002/jobm.202400221","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Almost all cell types naturally secret extracellular vesicles (EVs) in the extracellular space with variable metabolic cargo facilitating intracellular communication, posing immune-modulation capacity. Thus, “bacterial extracellular vesicles” (BEVs), with their great immunoregulatory, immune response stimulation and disease condition-altering potential, have gained importance in the medical and therapeutic industry. Various subtypes of BEVs were observed and reported in the literature, such as exosomes (30–150 nm), microvesicles (100–1000 nm), apoptotic bodies (1000–5000 nm), and oncosomes (1000–10,000 nm). As biological systems are complex entities, inserting BEVs requires extra high purity. Various techniques for BEV isolation have been employed alone or with other strategies, such as ultracentrifugation, precipitation, size-exclusion chromatography, affinity-based separation, ultrafiltration, and field-flow fractionation. But to date, no BEV isolation method is considered perfect as the lack of standard protocols limits their scale-up. Medical research has focused on BEVs to explore their diverse therapeutic potential. This review particularly focused on the recent advancements in the potential medical application of BEVs, current challenges, and prospects associated with their scale-up.</p>\n </div>","PeriodicalId":15101,"journal":{"name":"Journal of Basic Microbiology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Basic Microbiology","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jobm.202400221","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Almost all cell types naturally secret extracellular vesicles (EVs) in the extracellular space with variable metabolic cargo facilitating intracellular communication, posing immune-modulation capacity. Thus, “bacterial extracellular vesicles” (BEVs), with their great immunoregulatory, immune response stimulation and disease condition-altering potential, have gained importance in the medical and therapeutic industry. Various subtypes of BEVs were observed and reported in the literature, such as exosomes (30–150 nm), microvesicles (100–1000 nm), apoptotic bodies (1000–5000 nm), and oncosomes (1000–10,000 nm). As biological systems are complex entities, inserting BEVs requires extra high purity. Various techniques for BEV isolation have been employed alone or with other strategies, such as ultracentrifugation, precipitation, size-exclusion chromatography, affinity-based separation, ultrafiltration, and field-flow fractionation. But to date, no BEV isolation method is considered perfect as the lack of standard protocols limits their scale-up. Medical research has focused on BEVs to explore their diverse therapeutic potential. This review particularly focused on the recent advancements in the potential medical application of BEVs, current challenges, and prospects associated with their scale-up.

细菌胞外囊泡:潜在的治疗应用、挑战和未来前景》(Potential Therapeutic Applications, Challenges, and Future Prospects.
几乎所有类型的细胞都会在细胞外空间自然分泌细胞外囊泡 (EVs),其中含有促进细胞内交流的可变代谢货物,具有免疫调节能力。因此,"细菌胞外囊泡"(BEVs)以其巨大的免疫调节、免疫反应刺激和改变疾病状况的潜力,在医疗和治疗领域受到重视。文献中观察到并报道了各种亚型的 BEV,如外泌体(30-150 nm)、微囊泡(100-1000 nm)、凋亡体(1000-5000 nm)和 oncosomes(1000-10000 nm)。由于生物系统是复杂的实体,因此插入 BEV 需要极高的纯度。人们已经单独或与其他策略一起采用了各种分离 BEV 的技术,如超离心法、沉淀法、大小排阻色谱法、亲和分离法、超滤法和场流分馏法。但迄今为止,没有一种 BEV 分离方法被认为是完美的,因为缺乏标准协议限制了其规模化应用。医学研究一直关注 BEV,以探索其多种治疗潜力。本综述特别关注 BEV 在潜在医疗应用方面的最新进展、当前面临的挑战以及与其规模化相关的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Basic Microbiology
Journal of Basic Microbiology 生物-微生物学
CiteScore
6.10
自引率
0.00%
发文量
134
审稿时长
1.8 months
期刊介绍: The Journal of Basic Microbiology (JBM) publishes primary research papers on both procaryotic and eucaryotic microorganisms, including bacteria, archaea, fungi, algae, protozoans, phages, viruses, viroids and prions. Papers published deal with: microbial interactions (pathogenic, mutualistic, environmental), ecology, physiology, genetics and cell biology/development, new methodologies, i.e., new imaging technologies (e.g. video-fluorescence microscopy, modern TEM applications) novel molecular biology methods (e.g. PCR-based gene targeting or cassettes for cloning of GFP constructs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信