El-Sayed R El-Sayed, Shaimaa A Mousa, Tomasz Strzała, Filip Boratyński
{"title":"Enhancing bioprocessing of red pigment from immobilized culture of gamma rays mutant of the endophytic fungus Monascus ruber SRZ112.","authors":"El-Sayed R El-Sayed, Shaimaa A Mousa, Tomasz Strzała, Filip Boratyński","doi":"10.1186/s13036-024-00439-y","DOIUrl":null,"url":null,"abstract":"<p><p>Considerable attention has been paid to exploring the biotechnological applications of several Monascus sp. for pigment production. In this study, our focus is on enhancing the bioprocessing of red pigment (RP) derived from the endophytic fungus Monascus ruber SRZ112. To achieve this, we developed a stable mutant strain with improved productivity through gamma irradiation. This mutant was then employed in the immobilization technique using various entrapment carriers. Subsequently, we optimized the culture medium for maximal RP production using the Response Surface Methodology. Finally, these immobilized cultures were successfully utilized for RP production using a semi-continuous mode of fermentation. After eight cycles of fermentation, the highest RP yield by immobilized mycelia reached 309.17 CV mL<sup>-1</sup>, a significant increase compared to the original titer. Importantly, this study marks the first report on the successful production of Monascus RP in a semi-continuous mode using gamma rays' mutant strain, offering prospects for commercial production.</p>","PeriodicalId":15053,"journal":{"name":"Journal of Biological Engineering","volume":"18 1","pages":"44"},"PeriodicalIF":5.7000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Engineering","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13036-024-00439-y","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Considerable attention has been paid to exploring the biotechnological applications of several Monascus sp. for pigment production. In this study, our focus is on enhancing the bioprocessing of red pigment (RP) derived from the endophytic fungus Monascus ruber SRZ112. To achieve this, we developed a stable mutant strain with improved productivity through gamma irradiation. This mutant was then employed in the immobilization technique using various entrapment carriers. Subsequently, we optimized the culture medium for maximal RP production using the Response Surface Methodology. Finally, these immobilized cultures were successfully utilized for RP production using a semi-continuous mode of fermentation. After eight cycles of fermentation, the highest RP yield by immobilized mycelia reached 309.17 CV mL-1, a significant increase compared to the original titer. Importantly, this study marks the first report on the successful production of Monascus RP in a semi-continuous mode using gamma rays' mutant strain, offering prospects for commercial production.
人们对探索几种用于生产色素的蒙那斯古斯菌的生物技术应用给予了极大的关注。在本研究中,我们的重点是提高从内生真菌 Monascus ruber SRZ112 中提取的红色素(RP)的生物加工能力。为此,我们开发了一种稳定的突变菌株,通过伽马射线照射提高了生产率。然后,我们使用各种夹持载体将这种突变株用于固定化技术中。随后,我们利用响应面方法优化了培养基,以获得最大的 RP 产量。最后,我们利用半连续发酵模式成功地将这些固定化培养物用于 RP 生产。经过八个周期的发酵,固定化菌丝体的最高 RP 产量达到了 309.17 CV mL-1,与原始滴度相比有了显著提高。重要的是,这项研究首次报道了利用伽马射线突变菌株在半连续模式下成功生产莫纳氏菌可溶性磷酸酯,为商业化生产提供了前景。
期刊介绍:
Biological engineering is an emerging discipline that encompasses engineering theory and practice connected to and derived from the science of biology, just as mechanical engineering and electrical engineering are rooted in physics and chemical engineering in chemistry. Topical areas include, but are not limited to:
Synthetic biology and cellular design
Biomolecular, cellular and tissue engineering
Bioproduction and metabolic engineering
Biosensors
Ecological and environmental engineering
Biological engineering education and the biodesign process
As the official journal of the Institute of Biological Engineering, Journal of Biological Engineering provides a home for the continuum from biological information science, molecules and cells, product formation, wastes and remediation, and educational advances in curriculum content and pedagogy at the undergraduate and graduate-levels.
Manuscripts should explore commonalities with other fields of application by providing some discussion of the broader context of the work and how it connects to other areas within the field.