Luteinizing Hormone Receptor Mutation (LHRN316S) Causes Abnormal Follicular Development Revealed by Follicle Single-Cell Analysis and CRISPR/Cas9.

IF 3.9 2区 生物学 Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Chen Zhang, Yongqiang Nie, Bufang Xu, Chunlan Mu, Geng G Tian, Xiaoyong Li, Weiwei Cheng, Aijun Zhang, Dali Li, Ji Wu
{"title":"Luteinizing Hormone Receptor Mutation (LHR<sup>N316S</sup>) Causes Abnormal Follicular Development Revealed by Follicle Single-Cell Analysis and CRISPR/Cas9.","authors":"Chen Zhang, Yongqiang Nie, Bufang Xu, Chunlan Mu, Geng G Tian, Xiaoyong Li, Weiwei Cheng, Aijun Zhang, Dali Li, Ji Wu","doi":"10.1007/s12539-024-00646-7","DOIUrl":null,"url":null,"abstract":"<p><p>Abnormal interaction between granulosa cells and oocytes causes disordered development of ovarian follicles. However, the interactions between oocytes and cumulus granulosa cells (CGs), oocytes and mural granulosa cells (MGs), and CGs and MGs remain to be fully explored. Using single-cell RNA-sequencing (scRNA-seq), we determined the transcriptional profiles of oocytes, CGs and MGs in antral follicles. Analysis of scRNA-seq data revealed that CGs may regulate follicular development through the BMP15-KITL-KIT-PI3K-ARF6 pathway with elevated expression of luteinizing hormone receptor (LHR). Because internalization of the LHR is regulated by Arf6, we constructed LHR<sup>N316S</sup> mice by CRISPR/Cas9 to further explore mechanisms of follicular development and novel treatment strategies for female infertility. Ovaries of LHR<sup>N316S</sup> mice exhibited reduced numbers of corpora lutea and ovulation. The LHR<sup>N316S</sup> mice had a reduced rate of oocyte maturation in vitro and decreased serum progesterone levels. Mating LHR<sup>N316S</sup> female mice with ICR wild type male mice revealed that the infertility rate of LHR<sup>N316S</sup> mice was 21.4% (3/14). Litter sizes from LHR<sup>N316S</sup> mice were smaller than those from control wild type female mice. The oocytes from LHR<sup>N316S</sup> mice had an increased rate of maturation in vitro after progesterone administration in vitro. Furthermore, progesterone treated LHR<sup>N316S</sup> mice produced offspring numbers per litter equivalent to WT mice. These findings provide key insights into cellular interactions in ovarian follicles and provide important clues for infertility treatment.</p>","PeriodicalId":13670,"journal":{"name":"Interdisciplinary Sciences: Computational Life Sciences","volume":" ","pages":"976-989"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11512921/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Sciences: Computational Life Sciences","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12539-024-00646-7","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Abnormal interaction between granulosa cells and oocytes causes disordered development of ovarian follicles. However, the interactions between oocytes and cumulus granulosa cells (CGs), oocytes and mural granulosa cells (MGs), and CGs and MGs remain to be fully explored. Using single-cell RNA-sequencing (scRNA-seq), we determined the transcriptional profiles of oocytes, CGs and MGs in antral follicles. Analysis of scRNA-seq data revealed that CGs may regulate follicular development through the BMP15-KITL-KIT-PI3K-ARF6 pathway with elevated expression of luteinizing hormone receptor (LHR). Because internalization of the LHR is regulated by Arf6, we constructed LHRN316S mice by CRISPR/Cas9 to further explore mechanisms of follicular development and novel treatment strategies for female infertility. Ovaries of LHRN316S mice exhibited reduced numbers of corpora lutea and ovulation. The LHRN316S mice had a reduced rate of oocyte maturation in vitro and decreased serum progesterone levels. Mating LHRN316S female mice with ICR wild type male mice revealed that the infertility rate of LHRN316S mice was 21.4% (3/14). Litter sizes from LHRN316S mice were smaller than those from control wild type female mice. The oocytes from LHRN316S mice had an increased rate of maturation in vitro after progesterone administration in vitro. Furthermore, progesterone treated LHRN316S mice produced offspring numbers per litter equivalent to WT mice. These findings provide key insights into cellular interactions in ovarian follicles and provide important clues for infertility treatment.

Abstract Image

卵泡单细胞分析和 CRISPR/Cas9 发现促黄体生成素受体突变(LHRN316S)导致卵泡发育异常
颗粒细胞和卵母细胞之间的异常相互作用会导致卵泡发育紊乱。然而,卵母细胞与积层颗粒细胞(CGs)、卵母细胞与壁层颗粒细胞(MGs)以及CGs与MGs之间的相互作用仍有待充分探索。我们利用单细胞RNA测序(scRNA-seq)测定了前卵泡中卵母细胞、CGs和MGs的转录谱。scRNA-seq数据分析显示,CGs可能通过BMP15-KITL-KIT-PI3K-ARF6通路调控卵泡的发育,同时升高黄体生成素受体(LHR)的表达。由于LHR的内化受Arf6调控,我们通过CRISPR/Cas9构建了LHRN316S小鼠,以进一步探索卵泡发育机制和女性不孕症的新型治疗策略。LHRN316S小鼠的卵巢表现出黄体数量和排卵减少。LHRN316S 小鼠体外卵母细胞成熟率降低,血清孕酮水平下降。LHRN316S雌性小鼠与ICR野生型雄性小鼠交配显示,LHRN316S小鼠的不育率为21.4%(3/14)。与对照野生型雌性小鼠相比,LHRN316S小鼠的产仔数较少。体外注射黄体酮后,LHRN316S小鼠卵母细胞的体外成熟率增加。此外,经黄体酮处理的 LHRN316S 小鼠每胎产生的后代数量与 WT 小鼠相当。这些发现为卵巢卵泡中的细胞相互作用提供了重要见解,并为不孕症的治疗提供了重要线索。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Interdisciplinary Sciences: Computational Life Sciences
Interdisciplinary Sciences: Computational Life Sciences MATHEMATICAL & COMPUTATIONAL BIOLOGY-
CiteScore
8.60
自引率
4.20%
发文量
55
期刊介绍: Interdisciplinary Sciences--Computational Life Sciences aims to cover the most recent and outstanding developments in interdisciplinary areas of sciences, especially focusing on computational life sciences, an area that is enjoying rapid development at the forefront of scientific research and technology. The journal publishes original papers of significant general interest covering recent research and developments. Articles will be published rapidly by taking full advantage of internet technology for online submission and peer-reviewing of manuscripts, and then by publishing OnlineFirstTM through SpringerLink even before the issue is built or sent to the printer. The editorial board consists of many leading scientists with international reputation, among others, Luc Montagnier (UNESCO, France), Dennis Salahub (University of Calgary, Canada), Weitao Yang (Duke University, USA). Prof. Dongqing Wei at the Shanghai Jiatong University is appointed as the editor-in-chief; he made important contributions in bioinformatics and computational physics and is best known for his ground-breaking works on the theory of ferroelectric liquids. With the help from a team of associate editors and the editorial board, an international journal with sound reputation shall be created.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信