{"title":"The role of tryptophan metabolism and tolerogenic dendritic cells in maintaining immune tolerance: Insights into celiac disease pathogenesis","authors":"Fatemeh Asgari, Mahdi Khodadoust, Abdolrahim Nikzamir, Somayeh Jahani-Sherafat, Mostafa Rezaei Tavirani, Mohammad Rostami-Nejad","doi":"10.1002/iid3.1354","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>In mammals, amino acid metabolism has evolved to control immune responses. Tryptophan (Trp) is the rarest essential amino acid found in food and its metabolism has evolved to be a primary regulatory node in the control of immune responses. Celiac disease (CeD) is a developed immunological condition caused by gluten intolerance and is linked to chronic small intestine enteropathy in genetically predisposed individuals. Dendritic cells (DCs), serving as the bridge between innate and adaptive immunities, can influence immunological responses in CeD through phenotypic alterations.</p>\n </section>\n \n <section>\n \n <h3> Objective</h3>\n \n <p>This review aims to highlight the connection between Trp metabolism and tolerogenic DCs, and the significance of this interaction in the pathogenesis of CeD.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>It is been recognized that various DC subtypes contribute to the pathogenesis of CeD. Tolerogenic DCs, in particular, are instrumental in inducing immune tolerance, leading to T-reg differentiation that helps maintain intestinal immune tolerance against inflammatory responses in CeD patients and those with other autoimmune disorders. T-regs, a subset of T-cells, play a crucial role in maintaining intestinal immunological homeostasis by regulating the activities of other immune cells. Notably, Trp metabolism, essential for T-reg function, facilitates T-reg differentiation through microbiota-mediated degradation and the kynurenine pathway.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Therefore, alterations in Trp metabolism could potentially influence the immune response in CeD, affecting both the development of the disease and the persistence of symptoms despite adherence to a gluten-free diet.</p>\n </section>\n </div>","PeriodicalId":13289,"journal":{"name":"Immunity, Inflammation and Disease","volume":"12 8","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/iid3.1354","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity, Inflammation and Disease","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/iid3.1354","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
In mammals, amino acid metabolism has evolved to control immune responses. Tryptophan (Trp) is the rarest essential amino acid found in food and its metabolism has evolved to be a primary regulatory node in the control of immune responses. Celiac disease (CeD) is a developed immunological condition caused by gluten intolerance and is linked to chronic small intestine enteropathy in genetically predisposed individuals. Dendritic cells (DCs), serving as the bridge between innate and adaptive immunities, can influence immunological responses in CeD through phenotypic alterations.
Objective
This review aims to highlight the connection between Trp metabolism and tolerogenic DCs, and the significance of this interaction in the pathogenesis of CeD.
Results
It is been recognized that various DC subtypes contribute to the pathogenesis of CeD. Tolerogenic DCs, in particular, are instrumental in inducing immune tolerance, leading to T-reg differentiation that helps maintain intestinal immune tolerance against inflammatory responses in CeD patients and those with other autoimmune disorders. T-regs, a subset of T-cells, play a crucial role in maintaining intestinal immunological homeostasis by regulating the activities of other immune cells. Notably, Trp metabolism, essential for T-reg function, facilitates T-reg differentiation through microbiota-mediated degradation and the kynurenine pathway.
Conclusion
Therefore, alterations in Trp metabolism could potentially influence the immune response in CeD, affecting both the development of the disease and the persistence of symptoms despite adherence to a gluten-free diet.
期刊介绍:
Immunity, Inflammation and Disease is a peer-reviewed, open access, interdisciplinary journal providing rapid publication of research across the broad field of immunology. Immunity, Inflammation and Disease gives rapid consideration to papers in all areas of clinical and basic research. The journal is indexed in Medline and the Science Citation Index Expanded (part of Web of Science), among others. It welcomes original work that enhances the understanding of immunology in areas including:
• cellular and molecular immunology
• clinical immunology
• allergy
• immunochemistry
• immunogenetics
• immune signalling
• immune development
• imaging
• mathematical modelling
• autoimmunity
• transplantation immunology
• cancer immunology