{"title":"LPG 18:0 is a general biomarker of asthma and inhibits the differentiation and function of regulatory T-cells.","authors":"Abudureyimujiang Aili, Yuqing Wang, Ying Shang, Lijiao Zhang, Huan Liu, Zemin Li, Lixiang Xue, Yahong Chen, Yongchang Sun, Xu Zhang, Rong Jin, Chun Chang","doi":"10.1183/13993003.01752-2023","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The diagnosis, severity assessment, and development of therapeutic strategies for asthma are crucial aspects of disease management. Since biomarkers are reliable tools in disease management, we aimed to identify and explore asthma-associated biomarkers and investigate their mechanisms.</p><p><strong>Methods: </strong>Lipidomics was used to profile serum glycerophospholipids in asthmatic patients and controls. The absolute concentration of lysophosphatidylglycerol (LPG) 18:0 was quantified in various asthma subtypes. Mouse asthma models were used to confirm its potential as a biomarker and investigate its mechanisms <i>in vivo.</i> The effects of LPG 18:0 on CD4<sup>+</sup> T-cell differentiation, proliferation and apoptosis were assessed <i>in vitro</i> by flow cytometry, while mitochondrial dysfunction was evaluated through mitochondrial membrane potential, reactive oxygen species and ATP production measurements. The intracellular mechanism of LPG 18:0 in regulatory T-cells (Tregs) was investigated using small-molecule inhibitors.</p><p><strong>Results: </strong>The serum glycerophospholipid profile varied between asthmatic patients and control group, with LPG 18:0 levels being notably higher in asthmatic patients, correlating with asthma severity and control level. <i>In vivo</i> and <i>in vitro</i> studies revealed that LPG 18:0 impaired naïve CD4<sup>+</sup> T-cell differentiation into Tregs and compromised their suppressive function. Further investigation demonstrated that LPG 18:0 treatment reduced the FOXP3 protein level <i>via</i> SIRT1-mediated deacetylation during Treg differentiation.</p><p><strong>Conclusions: </strong>This study identifies that serum levels of LPG 18:0 are generally elevated in asthmatics and serve as a biomarker for asthma. LPG 18:0 impairs Treg function <i>via</i> the NAD<sup>+</sup>/SIRT1/FOXP3 pathway. Our research reveals the potential of LPG 18:0 as a biomarker for asthma, elucidating its role in asthma diagnosis and treatment.</p>","PeriodicalId":12265,"journal":{"name":"European Respiratory Journal","volume":" ","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618814/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Respiratory Journal","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1183/13993003.01752-2023","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The diagnosis, severity assessment, and development of therapeutic strategies for asthma are crucial aspects of disease management. Since biomarkers are reliable tools in disease management, we aimed to identify and explore asthma-associated biomarkers and investigate their mechanisms.
Methods: Lipidomics was used to profile serum glycerophospholipids in asthmatic patients and controls. The absolute concentration of lysophosphatidylglycerol (LPG) 18:0 was quantified in various asthma subtypes. Mouse asthma models were used to confirm its potential as a biomarker and investigate its mechanisms in vivo. The effects of LPG 18:0 on CD4+ T-cell differentiation, proliferation and apoptosis were assessed in vitro by flow cytometry, while mitochondrial dysfunction was evaluated through mitochondrial membrane potential, reactive oxygen species and ATP production measurements. The intracellular mechanism of LPG 18:0 in regulatory T-cells (Tregs) was investigated using small-molecule inhibitors.
Results: The serum glycerophospholipid profile varied between asthmatic patients and control group, with LPG 18:0 levels being notably higher in asthmatic patients, correlating with asthma severity and control level. In vivo and in vitro studies revealed that LPG 18:0 impaired naïve CD4+ T-cell differentiation into Tregs and compromised their suppressive function. Further investigation demonstrated that LPG 18:0 treatment reduced the FOXP3 protein level via SIRT1-mediated deacetylation during Treg differentiation.
Conclusions: This study identifies that serum levels of LPG 18:0 are generally elevated in asthmatics and serve as a biomarker for asthma. LPG 18:0 impairs Treg function via the NAD+/SIRT1/FOXP3 pathway. Our research reveals the potential of LPG 18:0 as a biomarker for asthma, elucidating its role in asthma diagnosis and treatment.
期刊介绍:
The European Respiratory Journal (ERJ) is the flagship journal of the European Respiratory Society. It has a current impact factor of 24.9. The journal covers various aspects of adult and paediatric respiratory medicine, including cell biology, epidemiology, immunology, oncology, pathophysiology, imaging, occupational medicine, intensive care, sleep medicine, and thoracic surgery. In addition to original research material, the ERJ publishes editorial commentaries, reviews, short research letters, and correspondence to the editor. The articles are published continuously and collected into 12 monthly issues in two volumes per year.