Red-light-dependent chlorophyll synthesis kindles photosynthetic recovery of chlorotic dormant cyanobacteria using a dark-operative enzyme.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Current Biology Pub Date : 2024-10-07 Epub Date: 2024-08-14 DOI:10.1016/j.cub.2024.07.083
Hai-Feng Xu, Chen Yu, Yang Bai, Ai-Wei Zuo, Ying-Tong Ye, Yan-Ru Liu, Zheng-Ke Li, Guo-Zheng Dai, Min Chen, Bao-Sheng Qiu
{"title":"Red-light-dependent chlorophyll synthesis kindles photosynthetic recovery of chlorotic dormant cyanobacteria using a dark-operative enzyme.","authors":"Hai-Feng Xu, Chen Yu, Yang Bai, Ai-Wei Zuo, Ying-Tong Ye, Yan-Ru Liu, Zheng-Ke Li, Guo-Zheng Dai, Min Chen, Bao-Sheng Qiu","doi":"10.1016/j.cub.2024.07.083","DOIUrl":null,"url":null,"abstract":"<p><p>Chlorosis dormancy resulting from nitrogen starvation and its resuscitation upon available nitrogen contributes greatly to the fitness of cyanobacterial population under nitrogen-fluctuating environments. The reinstallation of the photosynthetic machinery is a key process for resuscitation from a chlorotic dormant state; however, the underlying regulatory mechanism is still elusive. Here, we reported that red light is essential for re-greening chlorotic Synechocystis sp. PCC 6803 (a non-diazotrophic cyanobacterium) after nitrogen supplement under weak light conditions. The expression of dark-operative protochlorophyllide reductase (DPOR) governed by the transcriptional factor RpaB was strikingly induced by red light in chlorotic cells, and its deficient mutant lost the capability of resuscitation from a dormant state, indicating DPOR catalyzing chlorophyll synthesis is a key step in the photosynthetic recovery of dormant cyanobacteria. Although light-dependent protochlorophyllide reductase is widely considered as a master switch in photomorphogenesis, this study unravels the primitive DPOR as a spark to activate the photosynthetic recovery of chlorotic dormant cyanobacteria. These findings provide new insight into the biological significance of DPOR in cyanobacteria and even some plants thriving in extreme environments.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.07.083","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Chlorosis dormancy resulting from nitrogen starvation and its resuscitation upon available nitrogen contributes greatly to the fitness of cyanobacterial population under nitrogen-fluctuating environments. The reinstallation of the photosynthetic machinery is a key process for resuscitation from a chlorotic dormant state; however, the underlying regulatory mechanism is still elusive. Here, we reported that red light is essential for re-greening chlorotic Synechocystis sp. PCC 6803 (a non-diazotrophic cyanobacterium) after nitrogen supplement under weak light conditions. The expression of dark-operative protochlorophyllide reductase (DPOR) governed by the transcriptional factor RpaB was strikingly induced by red light in chlorotic cells, and its deficient mutant lost the capability of resuscitation from a dormant state, indicating DPOR catalyzing chlorophyll synthesis is a key step in the photosynthetic recovery of dormant cyanobacteria. Although light-dependent protochlorophyllide reductase is widely considered as a master switch in photomorphogenesis, this study unravels the primitive DPOR as a spark to activate the photosynthetic recovery of chlorotic dormant cyanobacteria. These findings provide new insight into the biological significance of DPOR in cyanobacteria and even some plants thriving in extreme environments.

依赖红光的叶绿素合成利用一种暗操作酶点燃了叶绿休眠蓝藻的光合作用恢复。
在氮波动环境下,氮饥饿导致的氯化休眠及其在可用氮条件下的复苏对蓝藻种群的适应性有很大的影响。光合作用机器的重新安装是从氯化休眠状态复苏的一个关键过程;然而,其潜在的调控机制仍然难以捉摸。在此,我们报道了在弱光条件下,红光对于补氮后绿化的 Synechocystis sp.由转录因子 RpaB 控制的暗操作原叶绿素还原酶(DPOR)的表达在氯化细胞中被红光显著诱导,其缺失突变体失去了从休眠状态复苏的能力,这表明催化叶绿素合成的 DPOR 是休眠蓝藻光合作用恢复的关键步骤。虽然依赖光的原叶绿素还原酶被广泛认为是光形态发生的总开关,但本研究揭示了原始的DPOR是激活氯化休眠蓝藻光合恢复的火花。这些发现为我们深入了解 DPOR 在蓝藻甚至一些在极端环境中茁壮成长的植物中的生物学意义提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信