{"title":"Enzyme-aided amplification strategy for sensitive detection of methamphetamine based on fluorescence aptamer sensor.","authors":"Zheyu Wang, Yandan Wang, Yishuo Tong, Weifen Niu","doi":"10.1007/s44211-024-00648-x","DOIUrl":null,"url":null,"abstract":"<p><p>Methamphetamine (METH) abuse poses a serious risk to human health and social stability. It is critical to develop sensitive and selective methods for detecting METH. Here, we develop a fluorescence aptamer sensor to detect METH based on DNA exonuclease III (Exo III), graphene oxide (GO), and FAM-labeled aptamer. First, the sensor used GO's strong binding capacity to adsorb and quench the fluorescence of the aptamer attached to GO surface. When METH was added to the system, the formation of stable complex for aptamer and METH dissociated from the surface of GO, leading to a fluorescence restoration. Then, the fluorescence signal was further amplified by using Exo III to liberate target METH for cyclic hybridization. And the gel electrophoresis experiment further verified the reliability of this strategy. This aptamer sensor exhibited a low detection limit (0.52 nM) and excellent selectivity under optimal conditions. Notably, this sensor has been successfully validated in the detection of METH in urine and saliva samples, exhibited commendable recovery (94.00-104.65%). Its benefits include facile, sensitive, and rapid. Expected to be used in practical METH detection.</p>","PeriodicalId":7802,"journal":{"name":"Analytical Sciences","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Sciences","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s44211-024-00648-x","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Methamphetamine (METH) abuse poses a serious risk to human health and social stability. It is critical to develop sensitive and selective methods for detecting METH. Here, we develop a fluorescence aptamer sensor to detect METH based on DNA exonuclease III (Exo III), graphene oxide (GO), and FAM-labeled aptamer. First, the sensor used GO's strong binding capacity to adsorb and quench the fluorescence of the aptamer attached to GO surface. When METH was added to the system, the formation of stable complex for aptamer and METH dissociated from the surface of GO, leading to a fluorescence restoration. Then, the fluorescence signal was further amplified by using Exo III to liberate target METH for cyclic hybridization. And the gel electrophoresis experiment further verified the reliability of this strategy. This aptamer sensor exhibited a low detection limit (0.52 nM) and excellent selectivity under optimal conditions. Notably, this sensor has been successfully validated in the detection of METH in urine and saliva samples, exhibited commendable recovery (94.00-104.65%). Its benefits include facile, sensitive, and rapid. Expected to be used in practical METH detection.
期刊介绍:
Analytical Sciences is an international journal published monthly by The Japan Society for Analytical Chemistry. The journal publishes papers on all aspects of the theory and practice of analytical sciences, including fundamental and applied, inorganic and organic, wet chemical and instrumental methods.
This publication is supported in part by the Grant-in-Aid for Publication of Scientific Research Result of the Japanese Ministry of Education, Culture, Sports, Science and Technology.