Enhancing Defect-Induced Dipole Polarization Strategy of SiC@MoO3 Nanocomposite Towards Electromagnetic Wave Absorption

IF 26.6 1区 材料科学 Q1 Engineering
Ting Wang, Wenxin Zhao, Yukun Miao, Anguo Cui, Chuanhui Gao, Chang Wang, Liying Yuan, Zhongning Tian, Alan Meng, Zhenjiang Li, Meng Zhang
{"title":"Enhancing Defect-Induced Dipole Polarization Strategy of SiC@MoO3 Nanocomposite Towards Electromagnetic Wave Absorption","authors":"Ting Wang,&nbsp;Wenxin Zhao,&nbsp;Yukun Miao,&nbsp;Anguo Cui,&nbsp;Chuanhui Gao,&nbsp;Chang Wang,&nbsp;Liying Yuan,&nbsp;Zhongning Tian,&nbsp;Alan Meng,&nbsp;Zhenjiang Li,&nbsp;Meng Zhang","doi":"10.1007/s40820-024-01478-2","DOIUrl":null,"url":null,"abstract":"<div><h2> Highlights</h2><div>\n \n \n<ul>\n <li>\n <p>Oxygen-vacancy-rich SiC@MoO<sub>3</sub> nanocomposite with strong reflection loss (− 50.49 dB at 1.27 mm thickness) and broadband absorption band (8.72 GHz at 2.68 mm thickness) were constructed via in situ etching strategy.</p>\n </li>\n <li>\n <p>The presence of oxygen vacancy leads to an increased conductive loss and defect-induced dipole polarization, which plays significant role in attenuating the incident electromagnetic wave.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"16 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11327238/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01478-2","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Highlights

  • Oxygen-vacancy-rich SiC@MoO3 nanocomposite with strong reflection loss (− 50.49 dB at 1.27 mm thickness) and broadband absorption band (8.72 GHz at 2.68 mm thickness) were constructed via in situ etching strategy.

  • The presence of oxygen vacancy leads to an increased conductive loss and defect-induced dipole polarization, which plays significant role in attenuating the incident electromagnetic wave.

Abstract Image

增强 SiC@MoO3 纳米复合材料对电磁波吸收的缺陷诱导偶极极化策略
过渡金属氧化物半导体(TMOs)中的缺陷工程正引起人们的极大兴趣,因为它可以通过有意引入缺陷来调节材料的电子结构,从而增强导电性。然而,要全面了解微结构与电磁波吸收能力之间的关系仍然遥不可及,这对过渡金属氧化物吸波材料的发展构成了巨大挑战。目前的研究描述了在碳化硅纳米线上沉积氧化钼层的过程,该过程是通过电沉积后高温煅烧实现的。随后,研究人员有意识地在 MoO3 层中制造氧空位,从而精确调整电磁特性,提高材料的微波吸收性能。值得注意的是,在匹配厚度为 1.27 mm 时,SiC@MO-t4 样品的最小反射损耗为 - 50.49 dB。此外,厚度为 2.81 毫米的 SiC@MO-t6 样品显示出 8.72 千兆赫的有效吸收带宽,全面覆盖了整个 Ku 波段。这些结果不仅凸显了缺陷工程在细微调整电磁特性方面的关键作用,也为应用缺陷工程方法拓宽电磁波吸收频谱提供了宝贵的启示。通过原位刻蚀 SiC@MoO3 纳米复合材料,制备了具有不同氧空位浓度的 SiC@MO-t 样品。氧空位的存在在调整带隙和局部电子分布方面起着至关重要的作用,这反过来又增强了导电性损耗和诱导极化损耗能力。这一发现揭示了一种通过缺陷工程改善电磁波吸收特性的新策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信