{"title":"Overcoming limitations in non-activated alkene cross-coupling with nickel catalysis and anionic ligands","authors":"Dong Wu, Weiyu Kong, Yang Bao, Chengmi Huang, Wei Liu, Yuqiang Li, Guoyin Yin","doi":"10.1038/s41929-024-01211-7","DOIUrl":null,"url":null,"abstract":"Multicomponent cross-coupling reactions involving alkenes represent a compelling strategy for accessing three-dimensional molecules, a key pursuit in contemporary medicinal chemistry. Transition metal-catalysed processes predominantly necessitate the use of conjugated alkenes or non-activated alkenes equipped with specific auxiliary functional groups, for example, 8-aminoquinoline. However, it remains a huge challenge to directly use unmodified native functional groups, such as alcohols and ethers, as directing groups. Here, by utilizing an anionic bidentate ligand such as acac, we have successfully addressed the challenge of employing weakly coordinating native functional groups as directing groups in a nickel-catalysed cross-coupling of non-activated alkenes. This reaction enables the simultaneous introduction of an sp2 fragment and an sp3 fragment to two carbons of the alkenes with high chemo- and regioselectivity. This work demonstrates the advantages and potential of anionic bidentate ligands in the cross-coupling of non-activated alkenes. The transition metal-catalysed multicomponent cross-coupling of alkenes currently relies on strongly coordinating groups to direct the reactivity. Now Wu et al. present a nickel catalyst that enables the installation of sp2 and sp3 fragments on alkenes using alcohols and ethers as directing groups.","PeriodicalId":18845,"journal":{"name":"Nature Catalysis","volume":"7 11","pages":"1154-1164"},"PeriodicalIF":42.8000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41929-024-01211-7","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Multicomponent cross-coupling reactions involving alkenes represent a compelling strategy for accessing three-dimensional molecules, a key pursuit in contemporary medicinal chemistry. Transition metal-catalysed processes predominantly necessitate the use of conjugated alkenes or non-activated alkenes equipped with specific auxiliary functional groups, for example, 8-aminoquinoline. However, it remains a huge challenge to directly use unmodified native functional groups, such as alcohols and ethers, as directing groups. Here, by utilizing an anionic bidentate ligand such as acac, we have successfully addressed the challenge of employing weakly coordinating native functional groups as directing groups in a nickel-catalysed cross-coupling of non-activated alkenes. This reaction enables the simultaneous introduction of an sp2 fragment and an sp3 fragment to two carbons of the alkenes with high chemo- and regioselectivity. This work demonstrates the advantages and potential of anionic bidentate ligands in the cross-coupling of non-activated alkenes. The transition metal-catalysed multicomponent cross-coupling of alkenes currently relies on strongly coordinating groups to direct the reactivity. Now Wu et al. present a nickel catalyst that enables the installation of sp2 and sp3 fragments on alkenes using alcohols and ethers as directing groups.
期刊介绍:
Nature Catalysis serves as a platform for researchers across chemistry and related fields, focusing on homogeneous catalysis, heterogeneous catalysis, and biocatalysts, encompassing both fundamental and applied studies. With a particular emphasis on advancing sustainable industries and processes, the journal provides comprehensive coverage of catalysis research, appealing to scientists, engineers, and researchers in academia and industry.
Maintaining the high standards of the Nature brand, Nature Catalysis boasts a dedicated team of professional editors, rigorous peer-review processes, and swift publication times, ensuring editorial independence and quality. The journal publishes work spanning heterogeneous catalysis, homogeneous catalysis, and biocatalysis, covering areas such as catalytic synthesis, mechanisms, characterization, computational studies, nanoparticle catalysis, electrocatalysis, photocatalysis, environmental catalysis, asymmetric catalysis, and various forms of organocatalysis.