Engineering and direct imaging of nanocube self-assembly pathways

Yaxu Zhong, Timothy C. Moore, Tobias Dwyer, Alex Butrum-Griffith, Vincent R. Allen, Jun Chen, Yi Wang, Fanrui Cheng, Sharon C. Glotzer, Xingchen Ye
{"title":"Engineering and direct imaging of nanocube self-assembly pathways","authors":"Yaxu Zhong, Timothy C. Moore, Tobias Dwyer, Alex Butrum-Griffith, Vincent R. Allen, Jun Chen, Yi Wang, Fanrui Cheng, Sharon C. Glotzer, Xingchen Ye","doi":"10.1038/s44286-024-00102-9","DOIUrl":null,"url":null,"abstract":"Nanoparticle self-assembly offers a scalable and versatile means to fabricate next-generation materials. The prevalence of metastable and nonequilibrium states during the assembly process makes the final structure and function directly dependent upon formation pathways. However, it remains challenging to steer the assembly pathway of a nanoparticle system toward multiple superstructures while visualizing in situ. Here we use liquid-cell transmission electron microscopy to image complete self-assembly processes of gold nanocubes, a model shape-anisotropic nanocolloidal system, into distinct superlattices. Theoretical analysis and molecular dynamics simulations indicate that the electrostatic screening of the medium dictates self-assembly pathways by its effects on the interactions between nanocubes. We leverage this understanding to demonstrate on-the-fly control of assembly behavior through rapid solvent exchange. Our joint experiment–simulation–theory investigation paves the way for elucidating the relationships among building block attributes, assembly pathways and superstructures in nanoscale assembly and opens new avenues for the bottom-up design of reconfigurable and adaptive metamaterials. Guiding the assembly pathway of a nanoparticle system toward multiple superstructures while visualizing in situ remains challenging. Here the authors combine liquid-cell transmission electron microscopy, scaling theory and molecular dynamics simulations to image and quantify self-assembly processes of gold nanocubes into distinct superlattices.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 8","pages":"532-541"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00102-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoparticle self-assembly offers a scalable and versatile means to fabricate next-generation materials. The prevalence of metastable and nonequilibrium states during the assembly process makes the final structure and function directly dependent upon formation pathways. However, it remains challenging to steer the assembly pathway of a nanoparticle system toward multiple superstructures while visualizing in situ. Here we use liquid-cell transmission electron microscopy to image complete self-assembly processes of gold nanocubes, a model shape-anisotropic nanocolloidal system, into distinct superlattices. Theoretical analysis and molecular dynamics simulations indicate that the electrostatic screening of the medium dictates self-assembly pathways by its effects on the interactions between nanocubes. We leverage this understanding to demonstrate on-the-fly control of assembly behavior through rapid solvent exchange. Our joint experiment–simulation–theory investigation paves the way for elucidating the relationships among building block attributes, assembly pathways and superstructures in nanoscale assembly and opens new avenues for the bottom-up design of reconfigurable and adaptive metamaterials. Guiding the assembly pathway of a nanoparticle system toward multiple superstructures while visualizing in situ remains challenging. Here the authors combine liquid-cell transmission electron microscopy, scaling theory and molecular dynamics simulations to image and quantify self-assembly processes of gold nanocubes into distinct superlattices.

Abstract Image

纳米立方体自组装路径的工程设计和直接成像
纳米粒子自组装为制造下一代材料提供了一种可扩展的多功能手段。组装过程中普遍存在的可变状态和非平衡状态使得最终结构和功能直接取决于形成途径。然而,如何在原位可视化的同时引导纳米粒子系统的组装路径走向多种超结构仍然是一项挑战。在这里,我们使用液胞透射电子显微镜对金纳米立方体(一种形状各向异性的纳米胶体系统模型)的完整自组装过程进行成像,将其组装成不同的超晶格。理论分析和分子动力学模拟表明,介质的静电筛选通过影响纳米立方体之间的相互作用来决定自组装路径。我们利用这一认识,展示了通过快速溶剂交换对组装行为的即时控制。我们的实验-模拟-理论联合研究为阐明纳米级组装中构件属性、组装路径和超结构之间的关系铺平了道路,并为自下而上地设计可重构和自适应超材料开辟了新途径。在原位可视化的同时,引导纳米粒子系统的组装路径走向多种上层结构仍然具有挑战性。在此,作者结合液胞透射电子显微镜、缩放理论和分子动力学模拟,对金纳米立方体自组装成不同超晶格的过程进行了成像和量化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信