{"title":"Scalable graphene current collectors for enhanced thermal management in batteries","authors":"","doi":"10.1038/s44286-024-00105-6","DOIUrl":null,"url":null,"abstract":"A protocol is demonstrated for the fabrication of dense and defect-free graphene current collectors on the hundred-meter scale. Owing to their high thermal conductivity and dense structures, these current collectors effectively prevent thermal runaway in high-energy pouch cells through the dissipation of localized heat and circumvention of undesirable side reactions, enhancing battery safety.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"1 8","pages":"506-507"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-024-00105-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A protocol is demonstrated for the fabrication of dense and defect-free graphene current collectors on the hundred-meter scale. Owing to their high thermal conductivity and dense structures, these current collectors effectively prevent thermal runaway in high-energy pouch cells through the dissipation of localized heat and circumvention of undesirable side reactions, enhancing battery safety.