{"title":"Curvature varifolds with orthogonal boundary","authors":"Ernst Kuwert, Marius Müller","doi":"10.1112/jlms.12976","DOIUrl":null,"url":null,"abstract":"<p>We consider the class <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>S</mi>\n <mo>⊥</mo>\n <mi>m</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\bf S}^m_\\perp (\\Omega)$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>-dimensional surfaces in <span></span><math>\n <semantics>\n <mrow>\n <mover>\n <mi>Ω</mi>\n <mo>¯</mo>\n </mover>\n <mo>⊂</mo>\n <msup>\n <mi>R</mi>\n <mi>n</mi>\n </msup>\n </mrow>\n <annotation>$\\overline{\\Omega } \\subset {\\mathbb {R}}^n$</annotation>\n </semantics></math> that intersect <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mo>=</mo>\n <mi>∂</mi>\n <mi>Ω</mi>\n </mrow>\n <annotation>$S = \\partial \\Omega$</annotation>\n </semantics></math> orthogonally along the boundary. A piece of an affine <span></span><math>\n <semantics>\n <mi>m</mi>\n <annotation>$m$</annotation>\n </semantics></math>-plane in <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>S</mi>\n <mo>⊥</mo>\n <mi>m</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>Ω</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>${\\bf S}^m_\\perp (\\Omega)$</annotation>\n </semantics></math> is called an orthogonal slice. We prove estimates for the area by the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mi>p</mi>\n </msup>\n <annotation>$L^p$</annotation>\n </semantics></math> integral of the second fundamental form in three cases: first, when <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> admits no orthogonal slices, second for <span></span><math>\n <semantics>\n <mrow>\n <mi>m</mi>\n <mo>=</mo>\n <mi>p</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$m = p = 2$</annotation>\n </semantics></math> if all orthogonal slices are topological disks, and finally, for all <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> if the surfaces are confined to a neighborhood of <span></span><math>\n <semantics>\n <mi>S</mi>\n <annotation>$S$</annotation>\n </semantics></math>. The orthogonality constraint has a weak formulation for curvature varifolds. We classify those varifolds of vanishing curvature. As an application, we prove for any <span></span><math>\n <semantics>\n <mi>Ω</mi>\n <annotation>$\\Omega$</annotation>\n </semantics></math> the existence of an orthogonal 2-varifold that minimizes the <span></span><math>\n <semantics>\n <msup>\n <mi>L</mi>\n <mn>2</mn>\n </msup>\n <annotation>$L^2$</annotation>\n </semantics></math> curvature in the integer rectifiable class.</p>","PeriodicalId":49989,"journal":{"name":"Journal of the London Mathematical Society-Second Series","volume":"110 3","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12976","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the London Mathematical Society-Second Series","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12976","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the class of -dimensional surfaces in that intersect orthogonally along the boundary. A piece of an affine -plane in is called an orthogonal slice. We prove estimates for the area by the integral of the second fundamental form in three cases: first, when admits no orthogonal slices, second for if all orthogonal slices are topological disks, and finally, for all if the surfaces are confined to a neighborhood of . The orthogonality constraint has a weak formulation for curvature varifolds. We classify those varifolds of vanishing curvature. As an application, we prove for any the existence of an orthogonal 2-varifold that minimizes the curvature in the integer rectifiable class.
期刊介绍:
The Journal of the London Mathematical Society has been publishing leading research in a broad range of mathematical subject areas since 1926. The Journal welcomes papers on subjects of general interest that represent a significant advance in mathematical knowledge, as well as submissions that are deemed to stimulate new interest and research activity.