Clustering by Contour Coreset and Variational Quantum Eigensolver

IF 4.4 Q1 OPTICS
Canaan Yung, Muhammad Usman
{"title":"Clustering by Contour Coreset and Variational Quantum Eigensolver","authors":"Canaan Yung,&nbsp;Muhammad Usman","doi":"10.1002/qute.202300450","DOIUrl":null,"url":null,"abstract":"<p>Recent work has proposed solving the k-means clustering problem on quantum computers via the Quantum Approximate Optimization Algorithm (QAOA) and coreset techniques. Although the current method demonstrates the possibility of quantum k-means clustering, it does not ensure high accuracy and consistency across a wide range of datasets. The existing coreset techniques are designed for classical algorithms, and there is no quantum-tailored coreset technique designed to boost the accuracy of quantum algorithms. This study proposes solving the k-means clustering problem with the variational quantum eigensolver (VQE) and a customized coreset method, the Contour coreset, which is formulated with a specific focus on quantum algorithms. Extensive simulations with synthetic and real-life data demonstrated that the VQE+Contour Coreset approach outperforms existing QAOA+Coreset k-means clustering approaches with higher accuracy and lower standard deviation. This research demonstrates that quantum-tailored coreset techniques can remarkably boost the performance of quantum algorithms compared to generic off-the-shelf coreset techniques.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202300450","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202300450","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recent work has proposed solving the k-means clustering problem on quantum computers via the Quantum Approximate Optimization Algorithm (QAOA) and coreset techniques. Although the current method demonstrates the possibility of quantum k-means clustering, it does not ensure high accuracy and consistency across a wide range of datasets. The existing coreset techniques are designed for classical algorithms, and there is no quantum-tailored coreset technique designed to boost the accuracy of quantum algorithms. This study proposes solving the k-means clustering problem with the variational quantum eigensolver (VQE) and a customized coreset method, the Contour coreset, which is formulated with a specific focus on quantum algorithms. Extensive simulations with synthetic and real-life data demonstrated that the VQE+Contour Coreset approach outperforms existing QAOA+Coreset k-means clustering approaches with higher accuracy and lower standard deviation. This research demonstrates that quantum-tailored coreset techniques can remarkably boost the performance of quantum algorithms compared to generic off-the-shelf coreset techniques.

Abstract Image

利用轮廓核心集和变分量子求解器进行聚类
最近的研究提出通过量子近似优化算法(QAOA)和核心集技术在量子计算机上解决 k-means 聚类问题。虽然目前的方法证明了量子 k-means 聚类的可能性,但它不能确保在各种数据集上的高准确性和一致性。现有的核心集技术是为经典算法设计的,还没有量子定制核心集技术来提高量子算法的准确性。本研究提出用变分量子求解器(VQE)和一种定制的核心集方法(Contour 核心集)来解决 k-means 聚类问题。利用合成数据和真实数据进行的大量仿真表明,VQE+Contour 核心集方法优于现有的 QAOA+Coreset k-means 聚类方法,具有更高的准确度和更低的标准偏差。这项研究表明,与通用的现成核心集技术相比,量子定制核心集技术能显著提高量子算法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信