{"title":"Back Cover: Nonreciprocal Unconventional Photon Blockade with Kerr Magnons (Adv. Quantum Technol. 8/2024)","authors":"Xiao-Hong Fan, Yi-Ning Zhang, Jun-Po Yu, Ming-Yue Liu, Wen-Di He, Hai-Chao Li, Wei Xiong","doi":"10.1002/qute.202470022","DOIUrl":null,"url":null,"abstract":"<p>In article number 2400043, Hai-Chao Li, Wei Xiong, and co-workers first propose to achieve nonreciprocal unconventional photon blockade with Kerr magnons. By tuning the direction of the biased magnetic field, the Kerr coefficient can be opposite, giving rise to nonreciprocity. With such a nonreciprocal nonlinearity, direction-dependent unconventional photon blockade, destructively interfering between two transition paths, can be realized in single- and two-sphere cavity–magnon systems. By tuning magnon–photon coupling, reciprocal and nonreciprocal photon blockade can be arbitrarily switched for two-sphere setup. This study offers a potential platform for investigating nonreciprocal photon blockade effect with Kerr magnons.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"7 8","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/qute.202470022","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qute.202470022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In article number 2400043, Hai-Chao Li, Wei Xiong, and co-workers first propose to achieve nonreciprocal unconventional photon blockade with Kerr magnons. By tuning the direction of the biased magnetic field, the Kerr coefficient can be opposite, giving rise to nonreciprocity. With such a nonreciprocal nonlinearity, direction-dependent unconventional photon blockade, destructively interfering between two transition paths, can be realized in single- and two-sphere cavity–magnon systems. By tuning magnon–photon coupling, reciprocal and nonreciprocal photon blockade can be arbitrarily switched for two-sphere setup. This study offers a potential platform for investigating nonreciprocal photon blockade effect with Kerr magnons.