Scanning electron microscopy-based quantification of keratin and hyaluronic acid microstructure in electrospun scaffolds

IF 2.5 Q2 MULTIDISCIPLINARY SCIENCES
Joyce N. Amajuoyi, Margaret O. Ilomuanya, Bukola Oseni, Chukwuemeka P. Azubuike, Athina Krestou, David A. Vorp, Alkiviadis Tsamis, Samson O. Adeosun
{"title":"Scanning electron microscopy-based quantification of keratin and hyaluronic acid microstructure in electrospun scaffolds","authors":"Joyce N. Amajuoyi,&nbsp;Margaret O. Ilomuanya,&nbsp;Bukola Oseni,&nbsp;Chukwuemeka P. Azubuike,&nbsp;Athina Krestou,&nbsp;David A. Vorp,&nbsp;Alkiviadis Tsamis,&nbsp;Samson O. Adeosun","doi":"10.1186/s43088-024-00539-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The extracellular matrix (ECM) structural deficiencies in chronic wounds prevent the wounds from healing through natural physiological processes. Electrospun biocompatible polymers offer a platform to produce microstructure wound dressing materials that mimic the ECM containing various bioactives to address the deficiencies in the chronic wound healing process. Quantitative characterization of the electrospun fiber microstructure could provide valuable information on using fiber constructs to facilitate wound healing. This work employed a validated image analysis tool to quantitatively explain various parameters for the microstructure of six electrospun fiber constructs, D1{Polycaprolactone (PCL), Polyvinyl alcohol (PVA), Keratin}, D2{PCL, PVA, keratin, Co-enzyme Q10 (CoQ10)}, D3 (PCL, PVA, keratin, mupirocin), D4 (PCL, PVA, keratin, CoQ10, mupirocin, valsartan), D5 {PVA, Hyaluronic acid (HA)}, and D6 (PVA), using scanning electron microscopy imaging modality.</p><h3>Results</h3><p>The fiber intersection density (FID) parameter was quantified in the formulations, e.g., 0.272% for D5 and 0.416% for D4. Orientation histograms for D1 and D6 are characteristic of isotropic materials, while orientations for D2 and D3 indicate anisotropy with 2 preferred orientations in each formulation. D4 and D5 present orientations characteristic of transversely isotropic materials. The tortuosity for D2 and D4 indicates almost straight fiber segments, in contrast with undulated fiber segments in all other formulations. Furthermore, the mean fiber diameter was quantified, e.g., 1.414 and 1.630 mm for D3 and D4, respectively.</p><h3>Conclusion</h3><p>Co-electrospun PVA/PCL microfibers offer great potential for controlled delivery of bioactives needed to accelerate the healing of chronic wounds. This image-based analysis technology quantitatively characterized different formulations of electrospun fiber scaffolds. This analysis sets the stage for future study that utilizes microstructural information in finite element biomechanical modeling, to investigate possible influence of structure-based mechanical factors on the ECM restorative potential of wound dressings. Adjustment of electrospinning conditions could produce fabricated constructs like the native ECM structural components with a functional role in wound healing.</p></div>","PeriodicalId":481,"journal":{"name":"Beni-Suef University Journal of Basic and Applied Sciences","volume":"13 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://bjbas.springeropen.com/counter/pdf/10.1186/s43088-024-00539-0","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Beni-Suef University Journal of Basic and Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43088-024-00539-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The extracellular matrix (ECM) structural deficiencies in chronic wounds prevent the wounds from healing through natural physiological processes. Electrospun biocompatible polymers offer a platform to produce microstructure wound dressing materials that mimic the ECM containing various bioactives to address the deficiencies in the chronic wound healing process. Quantitative characterization of the electrospun fiber microstructure could provide valuable information on using fiber constructs to facilitate wound healing. This work employed a validated image analysis tool to quantitatively explain various parameters for the microstructure of six electrospun fiber constructs, D1{Polycaprolactone (PCL), Polyvinyl alcohol (PVA), Keratin}, D2{PCL, PVA, keratin, Co-enzyme Q10 (CoQ10)}, D3 (PCL, PVA, keratin, mupirocin), D4 (PCL, PVA, keratin, CoQ10, mupirocin, valsartan), D5 {PVA, Hyaluronic acid (HA)}, and D6 (PVA), using scanning electron microscopy imaging modality.

Results

The fiber intersection density (FID) parameter was quantified in the formulations, e.g., 0.272% for D5 and 0.416% for D4. Orientation histograms for D1 and D6 are characteristic of isotropic materials, while orientations for D2 and D3 indicate anisotropy with 2 preferred orientations in each formulation. D4 and D5 present orientations characteristic of transversely isotropic materials. The tortuosity for D2 and D4 indicates almost straight fiber segments, in contrast with undulated fiber segments in all other formulations. Furthermore, the mean fiber diameter was quantified, e.g., 1.414 and 1.630 mm for D3 and D4, respectively.

Conclusion

Co-electrospun PVA/PCL microfibers offer great potential for controlled delivery of bioactives needed to accelerate the healing of chronic wounds. This image-based analysis technology quantitatively characterized different formulations of electrospun fiber scaffolds. This analysis sets the stage for future study that utilizes microstructural information in finite element biomechanical modeling, to investigate possible influence of structure-based mechanical factors on the ECM restorative potential of wound dressings. Adjustment of electrospinning conditions could produce fabricated constructs like the native ECM structural components with a functional role in wound healing.

基于扫描电子显微镜的电纺支架角蛋白和透明质酸微结构定量分析
背景慢性伤口中细胞外基质(ECM)结构的缺陷阻碍了伤口通过自然生理过程愈合。电纺生物相容性聚合物提供了一个生产微结构伤口敷料材料的平台,这种材料可模仿含有各种生物活性成分的细胞外基质,以解决慢性伤口愈合过程中的缺陷。电纺纤维微结构的定量表征可为使用纤维结构促进伤口愈合提供有价值的信息。这项工作采用了一种经过验证的图像分析工具来定量解释六种电纺纤维构建物的微观结构的各种参数:D1{聚己内酯(PCL)、聚乙烯醇(PVA)、角蛋白}、D2{PCL、D3(PCL、PVA、角蛋白、莫匹罗星)、D4(PCL、PVA、角蛋白、CoQ10、莫匹罗星、缬沙坦)、D5 {PVA、透明质酸(HA)}和 D6(PVA)。结果 对配方中的纤维交叉密度(FID)参数进行了量化,例如,D5 的纤维交叉密度为 0.272%,D6 的纤维交叉密度为 0.272%、D5 为 0.272%,D4 为 0.416%。D1 和 D6 的取向直方图是各向同性材料的特征,而 D2 和 D3 的取向则显示出各向异性,在每种配方中都有两种首选取向。D4 和 D5 的取向具有横向各向同性材料的特征。D2 和 D4 的扭曲度表明纤维段几乎是笔直的,而所有其他配方中的纤维段则呈波状。此外,还对平均纤维直径进行了量化,例如 D3 和 D4 的平均纤维直径分别为 1.414 毫米和 1.630 毫米。这项基于图像的分析技术对不同配方的电纺纤维支架进行了定量表征。这项分析为未来的研究奠定了基础,未来的研究将利用有限元生物力学模型中的微观结构信息,研究基于结构的机械因素对伤口敷料的 ECM 修复潜力可能产生的影响。调整电纺丝条件可以制造出与原生 ECM 结构组件类似的构造物,并在伤口愈合中发挥功能性作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
0.00%
发文量
0
期刊介绍: Beni-Suef University Journal of Basic and Applied Sciences (BJBAS) is a peer-reviewed, open-access journal. This journal welcomes submissions of original research, literature reviews, and editorials in its respected fields of fundamental science, applied science (with a particular focus on the fields of applied nanotechnology and biotechnology), medical sciences, pharmaceutical sciences, and engineering. The multidisciplinary aspects of the journal encourage global collaboration between researchers in multiple fields and provide cross-disciplinary dissemination of findings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信