Guizeng Qi , Dunxian She , Jun Xia , Jinxi Song , Wenzhe Jiao , Jiayu Li , Zheqiong Liu
{"title":"Soil moisture plays an increasingly important role role in constraining vegetation productivity in China over the past two decades","authors":"Guizeng Qi , Dunxian She , Jun Xia , Jinxi Song , Wenzhe Jiao , Jiayu Li , Zheqiong Liu","doi":"10.1016/j.agrformet.2024.110193","DOIUrl":null,"url":null,"abstract":"<div><p>Decreasing soil moisture (SM) and increasing vapor pressure deficit (VPD) are the main drought affecting factors of terrestrial vegetation productivity. Nevertheless, the impact of continued warming on the changing trend of SM and VPD constraints affecting vegetation productivity remains uncertain. Understanding the complex interactive effects of SM and VPD on vegetation is crucial for assessing drought risk and its ecological implications. This study aims to comprehensively quantify the trends in the respective contributions of SM and VPD to vegetation ecosystem productivity in China from 2000 to 2022. The results showed that both low SM and high VPD had significant inhibitory effects on gross primary productivity (GPP) anomaly. Furthermore, the magnitude of water stress on vegetation productivity increases, and is accompanied by a gradual expansion of areas experiencing significant water deficit during the study period. By decoupling the interactions between SM and VPD, we found that SM and VPD were the primary influencing factor of water stress on vegetation productivity, accounting for 60 % and 40 % of the total vegetated area, respectively. Notably, the effects of SM and VPD on GPP exhibited significant variations across different vegetation and climate gradients. The amount of land dominated by the SM constraint expanded, and SM gradually played an increasingly important role in the water stress of GPP over the past two decades. The results of the study are important to accurately assess the interrelationship between vegetation and climate in the context of climate change.</p></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016819232400306X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Decreasing soil moisture (SM) and increasing vapor pressure deficit (VPD) are the main drought affecting factors of terrestrial vegetation productivity. Nevertheless, the impact of continued warming on the changing trend of SM and VPD constraints affecting vegetation productivity remains uncertain. Understanding the complex interactive effects of SM and VPD on vegetation is crucial for assessing drought risk and its ecological implications. This study aims to comprehensively quantify the trends in the respective contributions of SM and VPD to vegetation ecosystem productivity in China from 2000 to 2022. The results showed that both low SM and high VPD had significant inhibitory effects on gross primary productivity (GPP) anomaly. Furthermore, the magnitude of water stress on vegetation productivity increases, and is accompanied by a gradual expansion of areas experiencing significant water deficit during the study period. By decoupling the interactions between SM and VPD, we found that SM and VPD were the primary influencing factor of water stress on vegetation productivity, accounting for 60 % and 40 % of the total vegetated area, respectively. Notably, the effects of SM and VPD on GPP exhibited significant variations across different vegetation and climate gradients. The amount of land dominated by the SM constraint expanded, and SM gradually played an increasingly important role in the water stress of GPP over the past two decades. The results of the study are important to accurately assess the interrelationship between vegetation and climate in the context of climate change.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.