Robust α-maxmin representations

IF 1 4区 经济学 Q3 ECONOMICS
Alain Chateauneuf , Xiangyu Qu , Caroline Ventura , Vassili Vergopoulos
{"title":"Robust α-maxmin representations","authors":"Alain Chateauneuf ,&nbsp;Xiangyu Qu ,&nbsp;Caroline Ventura ,&nbsp;Vassili Vergopoulos","doi":"10.1016/j.jmateco.2024.103045","DOIUrl":null,"url":null,"abstract":"<div><p>The class of <span><math><mi>α</mi></math></span>-maxmin representations of an agent’s preferences is meant to achieve a separation between the ambiguity he perceives and his attitude toward this perceived ambiguity. Yet the same preferences may admit a multiplicity of <span><math><mi>α</mi></math></span>-maxmin representations that contradict each other. We say that an <span><math><mi>α</mi></math></span>-maxmin representation is robust when no other <span><math><mi>α</mi></math></span>-maxmin representation exists for the same preferences. We obtain a full characterization of robustness for maxmin representation. In the case of general <span><math><mi>α</mi></math></span>-maxmin representations, we obtain sufficient conditions for both robustness and non-robustness. This contributes to better identification of the <span><math><mi>α</mi></math></span>-maxmin representations that admit a robust interpretation in terms of perceived ambiguity and ambiguity attitudes.</p></div>","PeriodicalId":50145,"journal":{"name":"Journal of Mathematical Economics","volume":"114 ","pages":"Article 103045"},"PeriodicalIF":1.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Economics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304406824001058","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The class of α-maxmin representations of an agent’s preferences is meant to achieve a separation between the ambiguity he perceives and his attitude toward this perceived ambiguity. Yet the same preferences may admit a multiplicity of α-maxmin representations that contradict each other. We say that an α-maxmin representation is robust when no other α-maxmin representation exists for the same preferences. We obtain a full characterization of robustness for maxmin representation. In the case of general α-maxmin representations, we obtain sufficient conditions for both robustness and non-robustness. This contributes to better identification of the α-maxmin representations that admit a robust interpretation in terms of perceived ambiguity and ambiguity attitudes.

稳健的α-最大最小表示法
代理人偏好的α-maxmin 表示类旨在实现代理人所感知到的模糊性与他对这种感知到的模糊性的态度之间的分离。然而,同样的偏好可能会有多个相互矛盾的 α-maxmin 表述。当相同偏好不存在其他α-最大最小表征时,我们就说这个α-最大最小表征是稳健的。我们得到了最大最小表示稳健性的完整表征。对于一般的 α-maxmin 表示,我们得到了稳健性和非稳健性的充分条件。这有助于更好地识别α-maxmin 表征,这些表征允许对感知模糊性和模糊态度进行稳健解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Economics
Journal of Mathematical Economics 管理科学-数学跨学科应用
CiteScore
1.70
自引率
7.70%
发文量
73
审稿时长
12.5 weeks
期刊介绍: The primary objective of the Journal is to provide a forum for work in economic theory which expresses economic ideas using formal mathematical reasoning. For work to add to this primary objective, it is not sufficient that the mathematical reasoning be new and correct. The work must have real economic content. The economic ideas must be interesting and important. These ideas may pertain to any field of economics or any school of economic thought.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信