Kexin Wei , Yang Shi , Xin Tan , Marwan Shalash , Juanna Ren , Abeer A. Faheim , Chong Jia , Runzhou Huang , Yequan Sheng , Zhanhu Guo , Shengbo Ge
{"title":"Recent development of metal-organic frameworks and their composites in electromagnetic wave absorption and shielding applications","authors":"Kexin Wei , Yang Shi , Xin Tan , Marwan Shalash , Juanna Ren , Abeer A. Faheim , Chong Jia , Runzhou Huang , Yequan Sheng , Zhanhu Guo , Shengbo Ge","doi":"10.1016/j.cis.2024.103271","DOIUrl":null,"url":null,"abstract":"<div><p>With the rapid development of information and communication industries, the usage of electromagnetic waves has caused the hazard of human health and misfunction of devices. The adsorption and shielding of electromagnetic waves have been achieved in various materials. The unique adjustable spatial structure makes metal-organic frameworks (MOFs) promising for electromagnetic shielding and adsorbing. As MOFs research advances, various large-scale MOF-based materials have been developed. For instance, MOFs spatial structure has been expanded from 2D to 3D to load more ligands. Progress in synthetic methods for MOFs and their derivatives is advancing, with priority on large-scale preparation and green synthesis. This review summarizes the methods for synthesizing MOFs and their derivatives, and explores the effects of MOFs spatial structure on electromagnetic interference (EMI) shielding and electromagnetic wave absorption capabilities. At the same time, detailed examples are used to focus on the applications of five different MOFs composites in electromagnetic shielding and electromagnetic wave absorption. Finally, the current challenges and prospects of MOFs in the electromagnetic field are introduced, providing a useful reference for the preparation and design of MOFs and their composites for electromagnetic wave processing applications.</p></div>","PeriodicalId":239,"journal":{"name":"Advances in Colloid and Interface Science","volume":"332 ","pages":"Article 103271"},"PeriodicalIF":15.9000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Colloid and Interface Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001868624001945","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of information and communication industries, the usage of electromagnetic waves has caused the hazard of human health and misfunction of devices. The adsorption and shielding of electromagnetic waves have been achieved in various materials. The unique adjustable spatial structure makes metal-organic frameworks (MOFs) promising for electromagnetic shielding and adsorbing. As MOFs research advances, various large-scale MOF-based materials have been developed. For instance, MOFs spatial structure has been expanded from 2D to 3D to load more ligands. Progress in synthetic methods for MOFs and their derivatives is advancing, with priority on large-scale preparation and green synthesis. This review summarizes the methods for synthesizing MOFs and their derivatives, and explores the effects of MOFs spatial structure on electromagnetic interference (EMI) shielding and electromagnetic wave absorption capabilities. At the same time, detailed examples are used to focus on the applications of five different MOFs composites in electromagnetic shielding and electromagnetic wave absorption. Finally, the current challenges and prospects of MOFs in the electromagnetic field are introduced, providing a useful reference for the preparation and design of MOFs and their composites for electromagnetic wave processing applications.
期刊介绍:
"Advances in Colloid and Interface Science" is an international journal that focuses on experimental and theoretical developments in interfacial and colloidal phenomena. The journal covers a wide range of disciplines including biology, chemistry, physics, and technology.
The journal accepts review articles on any topic within the scope of colloid and interface science. These articles should provide an in-depth analysis of the subject matter, offering a critical review of the current state of the field. The author's informed opinion on the topic should also be included. The manuscript should compare and contrast ideas found in the reviewed literature and address the limitations of these ideas.
Typically, the articles published in this journal are written by recognized experts in the field.