Efficient mapped Jacobi spectral method for integral equations with two-sided singularities

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Xiu Yang , Changtao Sheng
{"title":"Efficient mapped Jacobi spectral method for integral equations with two-sided singularities","authors":"Xiu Yang ,&nbsp;Changtao Sheng","doi":"10.1016/j.apnum.2024.08.003","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we develop a mapped Jacobi spectral Galerkin method for solving the multi-term Fredholm integral equations (MFIEs) with two-sided weakly singularities. We introduce a new family of mapped Jacobi functions (MJFs) and establish the corresponding spectral approximation results on these MJFs in weighted Sobolev spaces involving the mapped Jacobi weight function. These MJFs serve as the basis functions in our algorithm design and are tailored to the two-sided end-points singularities of the solution by using suitable mapping. Moreover, we derive the error estimates of the proposed method for MFIEs. Finally, the numerical examples are provided to demonstrate the accuracy and efficiency of the proposed method.</p></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424001995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we develop a mapped Jacobi spectral Galerkin method for solving the multi-term Fredholm integral equations (MFIEs) with two-sided weakly singularities. We introduce a new family of mapped Jacobi functions (MJFs) and establish the corresponding spectral approximation results on these MJFs in weighted Sobolev spaces involving the mapped Jacobi weight function. These MJFs serve as the basis functions in our algorithm design and are tailored to the two-sided end-points singularities of the solution by using suitable mapping. Moreover, we derive the error estimates of the proposed method for MFIEs. Finally, the numerical examples are provided to demonstrate the accuracy and efficiency of the proposed method.

具有双面奇点的积分方程的高效映射雅可比谱法
本文开发了一种映射雅可比谱 Galerkin 方法,用于求解具有双面弱奇点的多期弗雷德霍姆积分方程(MFIEs)。我们引入了新的映射雅可比函数(MJFs)族,并在涉及映射雅可比权函数的加权索波列夫空间中建立了这些 MJFs 的相应谱近似结果。这些 MJF 在我们的算法设计中用作基函数,并通过适当的映射来适应解的双侧端点奇异性。此外,我们还推导了所提方法对 MFIE 的误差估计。最后,我们提供了数值示例来证明所提方法的准确性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信