A Deep Learning–Derived Transdiagnostic Signature Indexing Hypoarousal and Impulse Control: Implications for Treatment Prediction in Psychiatric Disorders
Hannah Meijs , Jurjen J. Luykx , Nikita van der Vinne , Rien Breteler , Evian Gordon , Alexander T. Sack , Hanneke van Dijk , Martijn Arns
{"title":"A Deep Learning–Derived Transdiagnostic Signature Indexing Hypoarousal and Impulse Control: Implications for Treatment Prediction in Psychiatric Disorders","authors":"Hannah Meijs , Jurjen J. Luykx , Nikita van der Vinne , Rien Breteler , Evian Gordon , Alexander T. Sack , Hanneke van Dijk , Martijn Arns","doi":"10.1016/j.bpsc.2024.07.027","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Psychiatric disorders are traditionally classified within diagnostic categories, but this approach has limitations. The Research Domain Criteria (RDoC) constitute a research classification system for psychiatric disorders based on dimensions within domains that cut across these psychiatric diagnoses. The overall aim of RDoC is to better understand mental illness in terms of dysfunction in fundamental neurobiological and behavioral systems, leading to better diagnosis, prevention, and treatment.</div></div><div><h3>Methods</h3><div>A unique electroencephalographic feature, referred to as spindling excessive beta, has been studied in relation to impulse control and sleep as part of the arousal/regulatory system RDoC domain. Here, we studied electroencephalographic frontal beta activity as a potential transdiagnostic biomarker capable of diagnosing and predicting impulse control and sleep problems.</div></div><div><h3>Results</h3><div>We showed in the first dataset (<em>n</em> = 3279) that the probability of having spindling excessive beta, classified by a deep learning algorithm, was associated with poor sleep maintenance and low daytime impulse control. Furthermore, in 2 additional, independent datasets (iSPOT-A [International Study to Predict Optimized Treatment in ADHD], <em>n</em> = 336; iSPOT-D [International Study to Predict Optimized Treatment in Depression], <em>n</em> = 1008), we revealed that conventional frontocentral beta power and/or spindling excessive beta probability, referred to as Brainmarker-III, is associated with a diagnosis of attention-deficit/hyperactivity disorder, with remission to methylphenidate in children with attention-deficit/hyperactivity disorder in a sex-specific manner, and with remission to antidepressant medication in adults with major depressive disorder in a drug-specific manner.</div></div><div><h3>Conclusion</h3><div>Our results demonstrate the value of the RDoC approach in psychiatry research for the discovery of biomarkers with diagnostic and treatment prediction capacities.</div></div>","PeriodicalId":54231,"journal":{"name":"Biological Psychiatry-Cognitive Neuroscience and Neuroimaging","volume":"10 6","pages":"Pages 587-596"},"PeriodicalIF":4.8000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Psychiatry-Cognitive Neuroscience and Neuroimaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451902224002374","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Psychiatric disorders are traditionally classified within diagnostic categories, but this approach has limitations. The Research Domain Criteria (RDoC) constitute a research classification system for psychiatric disorders based on dimensions within domains that cut across these psychiatric diagnoses. The overall aim of RDoC is to better understand mental illness in terms of dysfunction in fundamental neurobiological and behavioral systems, leading to better diagnosis, prevention, and treatment.
Methods
A unique electroencephalographic feature, referred to as spindling excessive beta, has been studied in relation to impulse control and sleep as part of the arousal/regulatory system RDoC domain. Here, we studied electroencephalographic frontal beta activity as a potential transdiagnostic biomarker capable of diagnosing and predicting impulse control and sleep problems.
Results
We showed in the first dataset (n = 3279) that the probability of having spindling excessive beta, classified by a deep learning algorithm, was associated with poor sleep maintenance and low daytime impulse control. Furthermore, in 2 additional, independent datasets (iSPOT-A [International Study to Predict Optimized Treatment in ADHD], n = 336; iSPOT-D [International Study to Predict Optimized Treatment in Depression], n = 1008), we revealed that conventional frontocentral beta power and/or spindling excessive beta probability, referred to as Brainmarker-III, is associated with a diagnosis of attention-deficit/hyperactivity disorder, with remission to methylphenidate in children with attention-deficit/hyperactivity disorder in a sex-specific manner, and with remission to antidepressant medication in adults with major depressive disorder in a drug-specific manner.
Conclusion
Our results demonstrate the value of the RDoC approach in psychiatry research for the discovery of biomarkers with diagnostic and treatment prediction capacities.
期刊介绍:
Biological Psychiatry: Cognitive Neuroscience and Neuroimaging is an official journal of the Society for Biological Psychiatry, whose purpose is to promote excellence in scientific research and education in fields that investigate the nature, causes, mechanisms, and treatments of disorders of thought, emotion, or behavior. In accord with this mission, this peer-reviewed, rapid-publication, international journal focuses on studies using the tools and constructs of cognitive neuroscience, including the full range of non-invasive neuroimaging and human extra- and intracranial physiological recording methodologies. It publishes both basic and clinical studies, including those that incorporate genetic data, pharmacological challenges, and computational modeling approaches. The journal publishes novel results of original research which represent an important new lead or significant impact on the field. Reviews and commentaries that focus on topics of current research and interest are also encouraged.