Kang-jie Cheng, Qing-qing Zhang, Feng Zhang, Russell Wang, Yun-feng Liu
{"title":"Biomechanical behavior of temporomandibular joint movements driven by mastication muscles","authors":"Kang-jie Cheng, Qing-qing Zhang, Feng Zhang, Russell Wang, Yun-feng Liu","doi":"10.1002/cnm.3862","DOIUrl":null,"url":null,"abstract":"<p>Surgery of jawbones has a high potential risk of causing complications associated with temporomandibular joint disorder (TMD). The objective of this study was to investigate the effects of two drive modeling methods on the biomechanical behavior of the temporomandibular joint (TMJ) including articular disc during mandibular movements. A finite element (FE) model from a healthy human computed tomography was used to evaluate TMJ dynamic using two methods, namely, a conventional spatial-oriented method (displacement-driven) and a compliant muscle-initiated method (masticatory muscle-driven). The same virtual FE model was 3D printed and a custom designed experimental platform was established to validate the accuracy of experimental and theoretical results of the TMJ biomechanics during mandibular movements. The results show that stress distributed to TMJ and articular disc from mandibular movements provided better representation from the muscle-driving approach than those of the displacement-driven modeling. The simulation and experimental data exhibited significant strong correlations during opening, protrusion, and laterotrusion (with canonical correlation coefficients of 0.994, 0.993, and 0.932, respectively). The use of muscle-driven modeling holds promise for more accurate forecasting of stress analysis of TMJ and articular disc during mandibular movements. The compliant approach to analyze TMJ dynamics would potentially contribute to clinic diagnosis and prediction of TMD resulting from occlusal disease and jawbone surgery such as orthognathic surgery or tumor resection.</p>","PeriodicalId":50349,"journal":{"name":"International Journal for Numerical Methods in Biomedical Engineering","volume":"40 10","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Numerical Methods in Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cnm.3862","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Surgery of jawbones has a high potential risk of causing complications associated with temporomandibular joint disorder (TMD). The objective of this study was to investigate the effects of two drive modeling methods on the biomechanical behavior of the temporomandibular joint (TMJ) including articular disc during mandibular movements. A finite element (FE) model from a healthy human computed tomography was used to evaluate TMJ dynamic using two methods, namely, a conventional spatial-oriented method (displacement-driven) and a compliant muscle-initiated method (masticatory muscle-driven). The same virtual FE model was 3D printed and a custom designed experimental platform was established to validate the accuracy of experimental and theoretical results of the TMJ biomechanics during mandibular movements. The results show that stress distributed to TMJ and articular disc from mandibular movements provided better representation from the muscle-driving approach than those of the displacement-driven modeling. The simulation and experimental data exhibited significant strong correlations during opening, protrusion, and laterotrusion (with canonical correlation coefficients of 0.994, 0.993, and 0.932, respectively). The use of muscle-driven modeling holds promise for more accurate forecasting of stress analysis of TMJ and articular disc during mandibular movements. The compliant approach to analyze TMJ dynamics would potentially contribute to clinic diagnosis and prediction of TMD resulting from occlusal disease and jawbone surgery such as orthognathic surgery or tumor resection.
期刊介绍:
All differential equation based models for biomedical applications and their novel solutions (using either established numerical methods such as finite difference, finite element and finite volume methods or new numerical methods) are within the scope of this journal. Manuscripts with experimental and analytical themes are also welcome if a component of the paper deals with numerical methods. Special cases that may not involve differential equations such as image processing, meshing and artificial intelligence are within the scope. Any research that is broadly linked to the wellbeing of the human body, either directly or indirectly, is also within the scope of this journal.