Joshua D Herman, Rachel E Roca, Alexandra G O'Neill, Marcus L Wong, Sajan Goud Lingala, Angel R Pineda
{"title":"Task-based assessment for neural networks: evaluating undersampled MRI reconstructions based on human observer signal detection.","authors":"Joshua D Herman, Rachel E Roca, Alexandra G O'Neill, Marcus L Wong, Sajan Goud Lingala, Angel R Pineda","doi":"10.1117/1.JMI.11.4.045503","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Recent research explores using neural networks to reconstruct undersampled magnetic resonance imaging. Because of the complexity of the artifacts in the reconstructed images, there is a need to develop task-based approaches to image quality. We compared conventional global quantitative metrics to evaluate image quality in undersampled images generated by a neural network with human observer performance in a detection task. The purpose is to study which acceleration (2×, 3×, 4×, 5×) would be chosen with the conventional metrics and compare it to the acceleration chosen by human observer performance.</p><p><strong>Approach: </strong>We used common global metrics for evaluating image quality: the normalized root mean squared error (NRMSE) and structural similarity (SSIM). These metrics are compared with a measure of image quality that incorporates a subtle signal for a specific task to allow for image quality assessment that locally evaluates the effect of undersampling on a signal. We used a U-Net to reconstruct under-sampled images with 2×, 3×, 4×, and 5× one-dimensional undersampling rates. Cross-validation was performed for a 500- and a 4000-image training set with both SSIM and MSE losses. A two-alternative forced choice (2-AFC) observer study was carried out for detecting a subtle signal (small blurred disk) from images with the 4000-image training set.</p><p><strong>Results: </strong>We found that for both loss functions, the human observer performance on the 2-AFC studies led to a choice of a 2× undersampling, but the SSIM and NRMSE led to a choice of a 3× undersampling.</p><p><strong>Conclusions: </strong>For this detection task using a subtle small signal at the edge of detectability, SSIM and NRMSE led to an overestimate of the achievable undersampling using a U-Net before a steep loss of image quality between 2×, 3×, 4×, 5× undersampling rates when compared to the performance of human observers in the detection task.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11321363/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.11.4.045503","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Recent research explores using neural networks to reconstruct undersampled magnetic resonance imaging. Because of the complexity of the artifacts in the reconstructed images, there is a need to develop task-based approaches to image quality. We compared conventional global quantitative metrics to evaluate image quality in undersampled images generated by a neural network with human observer performance in a detection task. The purpose is to study which acceleration (2×, 3×, 4×, 5×) would be chosen with the conventional metrics and compare it to the acceleration chosen by human observer performance.
Approach: We used common global metrics for evaluating image quality: the normalized root mean squared error (NRMSE) and structural similarity (SSIM). These metrics are compared with a measure of image quality that incorporates a subtle signal for a specific task to allow for image quality assessment that locally evaluates the effect of undersampling on a signal. We used a U-Net to reconstruct under-sampled images with 2×, 3×, 4×, and 5× one-dimensional undersampling rates. Cross-validation was performed for a 500- and a 4000-image training set with both SSIM and MSE losses. A two-alternative forced choice (2-AFC) observer study was carried out for detecting a subtle signal (small blurred disk) from images with the 4000-image training set.
Results: We found that for both loss functions, the human observer performance on the 2-AFC studies led to a choice of a 2× undersampling, but the SSIM and NRMSE led to a choice of a 3× undersampling.
Conclusions: For this detection task using a subtle small signal at the edge of detectability, SSIM and NRMSE led to an overestimate of the achievable undersampling using a U-Net before a steep loss of image quality between 2×, 3×, 4×, 5× undersampling rates when compared to the performance of human observers in the detection task.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.