Clustering protein functional families at large scale with hierarchical approaches.

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Protein Science Pub Date : 2024-09-01 DOI:10.1002/pro.5140
Nicola Bordin, Harry Scholes, Clemens Rauer, Joel Roca-Martínez, Ian Sillitoe, Christine Orengo
{"title":"Clustering protein functional families at large scale with hierarchical approaches.","authors":"Nicola Bordin, Harry Scholes, Clemens Rauer, Joel Roca-Martínez, Ian Sillitoe, Christine Orengo","doi":"10.1002/pro.5140","DOIUrl":null,"url":null,"abstract":"<p><p>Proteins, fundamental to cellular activities, reveal their function and evolution through their structure and sequence. CATH functional families (FunFams) are coherent clusters of protein domain sequences in which the function is conserved across their members. The increasing volume and complexity of protein data enabled by large-scale repositories like MGnify or AlphaFold Database requires more powerful approaches that can scale to the size of these new resources. In this work, we introduce MARC and FRAN, two algorithms developed to build upon and address limitations of GeMMA/FunFHMMER, our original methods developed to classify proteins with related functions using a hierarchical approach. We also present CATH-eMMA, which uses embeddings or Foldseek distances to form relationship trees from distance matrices, reducing computational demands and handling various data types effectively. CATH-eMMA offers a highly robust and much faster tool for clustering protein functions on a large scale, providing a new tool for future studies in protein function and evolution.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"33 9","pages":"e5140"},"PeriodicalIF":4.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11325189/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.5140","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Proteins, fundamental to cellular activities, reveal their function and evolution through their structure and sequence. CATH functional families (FunFams) are coherent clusters of protein domain sequences in which the function is conserved across their members. The increasing volume and complexity of protein data enabled by large-scale repositories like MGnify or AlphaFold Database requires more powerful approaches that can scale to the size of these new resources. In this work, we introduce MARC and FRAN, two algorithms developed to build upon and address limitations of GeMMA/FunFHMMER, our original methods developed to classify proteins with related functions using a hierarchical approach. We also present CATH-eMMA, which uses embeddings or Foldseek distances to form relationship trees from distance matrices, reducing computational demands and handling various data types effectively. CATH-eMMA offers a highly robust and much faster tool for clustering protein functions on a large scale, providing a new tool for future studies in protein function and evolution.

用分层方法对蛋白质功能家族进行大规模聚类。
蛋白质是细胞活动的基础,通过其结构和序列揭示其功能和进化。CATH 功能家族(FunFams)是蛋白质结构域序列的连贯群集,其成员之间的功能是一致的。随着 MGnify 或 AlphaFold 数据库等大型资源库带来的蛋白质数据量和复杂性的不断增加,需要更强大的方法来扩展这些新资源的规模。在这项工作中,我们介绍了 MARC 和 FRAN,这两种算法是在 GeMMA/FunFHMMER 的基础上开发的,并解决了 GeMMA/FunFHMMER 的局限性。我们还介绍了 CATH-eMMA,它使用嵌入或 Foldseek 距离从距离矩阵中形成关系树,从而降低了计算要求并有效处理各种数据类型。CATH-eMMA 为蛋白质功能的大规模聚类提供了一种高度稳健且速度更快的工具,为未来蛋白质功能和进化研究提供了一种新工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信