求助PDF
{"title":"The Role of Oxalic Acid in <i>Clarireedia jacksonii</i> Virulence and Development on Creeping Bentgrass.","authors":"Daowen Huo, Nathaniel M Westrick, Ashley Nelson, Mehdi Kabbage, Paul Koch","doi":"10.1094/PHYTO-03-24-0094-R","DOIUrl":null,"url":null,"abstract":"<p><p>Dollar spot is a destructive foliar disease of amenity turfgrass caused by <i>Clarireedia</i> spp. fungi, mainly <i>C. jacksonii</i>, on the Northern United States region's cool-season grass. Oxalic acid (OA) is an important pathogenicity factor in related fungal plant pathogens such as <i>Sclerotinia sclerotiorum</i>; however, the role of OA in the pathogenic development of <i>C. jacksonii</i> remains unclear due to its recalcitrance to genetic manipulation. To overcome these challenges, a CRISPR/Cas9-mediated homologous recombination approach was developed. Using this novel approach, the oxaloacetate acetylhydrolase (<i>oah</i>) gene that is required for the biosynthesis of OA was deleted from a <i>C. jacksonii</i> wild-type (WT) strain. Two independent knockout mutants, Δ<i>Cjoah-1</i> and Δ<i>Cjoah-2</i>, were generated and inoculated on potted creeping bentgrass along with a WT isolate and a genome sequenced isolate LWC-10. After 12 days, bentgrass inoculated with the mutants Δ<i>Cjoah-1</i> and Δ<i>Cjoah-2</i> exhibited 59.41% lower dollar spot severity compared with the WT and LWC-10 isolates. OA production and environmental acidification were significantly reduced in both mutants when compared with the WT and LWC-10. Surprisingly, stromal formation was also severely undermined in the mutants in vitro, suggesting a critical developmental role of OA independent of plant infection. These results demonstrate that OA plays a significant role in <i>C. jacksonii</i> virulence and provide novel directions for future management of dollar spot. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"2394-2400"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-03-24-0094-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
Dollar spot is a destructive foliar disease of amenity turfgrass caused by Clarireedia spp. fungi, mainly C. jacksonii , on the Northern United States region's cool-season grass. Oxalic acid (OA) is an important pathogenicity factor in related fungal plant pathogens such as Sclerotinia sclerotiorum ; however, the role of OA in the pathogenic development of C. jacksonii remains unclear due to its recalcitrance to genetic manipulation. To overcome these challenges, a CRISPR/Cas9-mediated homologous recombination approach was developed. Using this novel approach, the oxaloacetate acetylhydrolase (oah ) gene that is required for the biosynthesis of OA was deleted from a C. jacksonii wild-type (WT) strain. Two independent knockout mutants, ΔCjoah-1 and ΔCjoah-2 , were generated and inoculated on potted creeping bentgrass along with a WT isolate and a genome sequenced isolate LWC-10. After 12 days, bentgrass inoculated with the mutants ΔCjoah-1 and ΔCjoah-2 exhibited 59.41% lower dollar spot severity compared with the WT and LWC-10 isolates. OA production and environmental acidification were significantly reduced in both mutants when compared with the WT and LWC-10. Surprisingly, stromal formation was also severely undermined in the mutants in vitro, suggesting a critical developmental role of OA independent of plant infection. These results demonstrate that OA plays a significant role in C. jacksonii virulence and provide novel directions for future management of dollar spot. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
草酸在 Clarireedia jacksonii 对匍匐翦股颖的毒力和发育过程中的作用。
美元斑是由真菌 Clarireedia spp.(主要是 Clarireedia jacksonii)在美国北部冷季型草坪上引起的一种破坏性草坪叶面病害。草酸(OA)是相关真菌植物病原体(如硬皮病菌)的重要致病因子,但由于其对遗传操作的顽固性,OA 在 C. jacksonii 的致病发展中的作用仍不清楚。为了克服这些挑战,我们开发了一种 CRISPR/Cas9 介导的同源重组方法。利用这种新方法,从 C. jacksonii 野生型染色中删除了 OA 生物合成所需的草酰乙酸乙酰水解酶(Oah)基因。产生了两个独立的基因敲除突变体:ΔCjoah-1 和 ΔCjoah-2,并将其与野生型分离株(WT)和基因组测序分离株 LWC-10 一起接种到盆栽匍匐翦股颖上。12 天后,接种了突变体 ΔCjoah-1 和 ΔCjoah-2 的翦股颖与 WT 和 LWC-10 株系相比,美元斑的严重程度降低了 59.41%。与 WT 和 LWC-10 相比,这两个突变体的草酸产量和环境酸化程度都明显降低。令人惊讶的是,突变体在体外的基质形成也受到了严重破坏,这表明 OA 在植物感染之外还起着关键的发育作用。这些结果表明,OA 在 C. jacksonii 的毒力中起着重要作用,并为未来美元斑的管理提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。