{"title":"Study on the Optimal Leaf Area-to-Fruit Ratio of Pear Trees on the Basis of Bearing Branch Girdling and Machine Learning.","authors":"Fanhang Zhang, Qi Wang, Haitao Li, Qinyang Zhou, Zhihao Tan, Xiaochao Zu, Xin Yan, Shaoling Zhang, Seishi Ninomiya, Yue Mu, Shutian Tao","doi":"10.34133/plantphenomics.0233","DOIUrl":null,"url":null,"abstract":"<p><p>The leaf area-to-fruit ratio (LAFR) is an important factor affecting fruit quality. Previous studies on LAFR have provided some recommendations for optimal values. However, these recommendations have been quite broad and lack effectiveness during the fruit thinning period. In this study, data on the LAFR and fruit quality of pears at 5 stages were collected by continuously girdling bearing branches throughout the entire fruit development process. Five different clustering algorithms, including KMeans, Agglomerative clustering, Spectral clustering, Birch, and Spectral biclustering, were employed to classify the fruit quality data. Agglomerative clustering yielded the best results when the dataset was divided into 4 clusters. The least squares method was utilized to fit the LAFR corresponding to the best quality cluster, and the optimal LAFR values for 28, 42, 63, 91, and 112 days after flowering were 12.54, 18.95, 23.79, 27.06, and 28.76 dm<sup>2</sup> (the corresponding leaf-to-fruit ratio values were 19, 29, 36, 41, and 44, respectively). Furthermore, field verification experiments demonstrated that the optimal LAFR contributed to improving pear fruit quality, and a relatively high LAFR beyond the optimum value did not further increase quality. In summary, we optimized the LAFR of pear trees at different stages and confirmed the effectiveness of the optimal LAFR in improving fruit quality. Our research provides a theoretical basis for managing pear tree fruit load and achieving high-quality, clean fruit production.</p>","PeriodicalId":20318,"journal":{"name":"Plant Phenomics","volume":"6 ","pages":"0233"},"PeriodicalIF":7.6000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11322523/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Phenomics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.34133/plantphenomics.0233","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The leaf area-to-fruit ratio (LAFR) is an important factor affecting fruit quality. Previous studies on LAFR have provided some recommendations for optimal values. However, these recommendations have been quite broad and lack effectiveness during the fruit thinning period. In this study, data on the LAFR and fruit quality of pears at 5 stages were collected by continuously girdling bearing branches throughout the entire fruit development process. Five different clustering algorithms, including KMeans, Agglomerative clustering, Spectral clustering, Birch, and Spectral biclustering, were employed to classify the fruit quality data. Agglomerative clustering yielded the best results when the dataset was divided into 4 clusters. The least squares method was utilized to fit the LAFR corresponding to the best quality cluster, and the optimal LAFR values for 28, 42, 63, 91, and 112 days after flowering were 12.54, 18.95, 23.79, 27.06, and 28.76 dm2 (the corresponding leaf-to-fruit ratio values were 19, 29, 36, 41, and 44, respectively). Furthermore, field verification experiments demonstrated that the optimal LAFR contributed to improving pear fruit quality, and a relatively high LAFR beyond the optimum value did not further increase quality. In summary, we optimized the LAFR of pear trees at different stages and confirmed the effectiveness of the optimal LAFR in improving fruit quality. Our research provides a theoretical basis for managing pear tree fruit load and achieving high-quality, clean fruit production.
期刊介绍:
Plant Phenomics is an Open Access journal published in affiliation with the State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University (NAU) and published by the American Association for the Advancement of Science (AAAS). Like all partners participating in the Science Partner Journal program, Plant Phenomics is editorially independent from the Science family of journals.
The mission of Plant Phenomics is to publish novel research that will advance all aspects of plant phenotyping from the cell to the plant population levels using innovative combinations of sensor systems and data analytics. Plant Phenomics aims also to connect phenomics to other science domains, such as genomics, genetics, physiology, molecular biology, bioinformatics, statistics, mathematics, and computer sciences. Plant Phenomics should thus contribute to advance plant sciences and agriculture/forestry/horticulture by addressing key scientific challenges in the area of plant phenomics.
The scope of the journal covers the latest technologies in plant phenotyping for data acquisition, data management, data interpretation, modeling, and their practical applications for crop cultivation, plant breeding, forestry, horticulture, ecology, and other plant-related domains.