{"title":"An accurate paradigm for denoising degraded ultrasound images based on artificial intelligence systems.","authors":"F E Al-Tahhan, M E Fares","doi":"10.1002/jemt.24675","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrasound images are susceptible to various forms of quality degradation that negatively impact diagnosis. Common degradations include speckle noise, Gaussian noise, salt and pepper noise, and blurring. This research proposes an accurate ultrasound image denoising strategy based on firstly detecting the noise type, then, suitable denoising methods can be applied for each corruption. The technique depends on convolutional neural networks to categorize the type of noise affecting an input ultrasound image. Pre-trained convolutional neural network models including GoogleNet, VGG-19, AlexNet and AlexNet-support vector machine (SVM) are developed and trained to perform this classification. A dataset of 782 numerically generated ultrasound images across different diseases and noise types is utilized for model training and evaluation. Results show AlexNet-SVM achieves the highest accuracy of 99.2% in classifying noise types. The results indicate that, the present technique is considered one of the top-performing models is then applied to real ultrasound images with different noise corruptions to demonstrate efficacy of the proposed detect-then-denoise system. RESEARCH HIGHLIGHTS: Proposes an accurate ultrasound image denoising strategy based on detecting noise type first. Uses pre-trained convolutional neural networks to categorize noise type in input images. Evaluates GoogleNet, VGG-19, AlexNet, and AlexNet-support vector machine (SVM) models on a dataset of 782 synthetic ultrasound images. AlexNet-SVM achieves highest accuracy of 99.2% in classifying noise types. Demonstrates efficacy of the proposed detect-then-denoise system on real ultrasound images.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/jemt.24675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Ultrasound images are susceptible to various forms of quality degradation that negatively impact diagnosis. Common degradations include speckle noise, Gaussian noise, salt and pepper noise, and blurring. This research proposes an accurate ultrasound image denoising strategy based on firstly detecting the noise type, then, suitable denoising methods can be applied for each corruption. The technique depends on convolutional neural networks to categorize the type of noise affecting an input ultrasound image. Pre-trained convolutional neural network models including GoogleNet, VGG-19, AlexNet and AlexNet-support vector machine (SVM) are developed and trained to perform this classification. A dataset of 782 numerically generated ultrasound images across different diseases and noise types is utilized for model training and evaluation. Results show AlexNet-SVM achieves the highest accuracy of 99.2% in classifying noise types. The results indicate that, the present technique is considered one of the top-performing models is then applied to real ultrasound images with different noise corruptions to demonstrate efficacy of the proposed detect-then-denoise system. RESEARCH HIGHLIGHTS: Proposes an accurate ultrasound image denoising strategy based on detecting noise type first. Uses pre-trained convolutional neural networks to categorize noise type in input images. Evaluates GoogleNet, VGG-19, AlexNet, and AlexNet-support vector machine (SVM) models on a dataset of 782 synthetic ultrasound images. AlexNet-SVM achieves highest accuracy of 99.2% in classifying noise types. Demonstrates efficacy of the proposed detect-then-denoise system on real ultrasound images.