{"title":"Tensile Strength of Nerve Bridging Models Using Collagen Nerve Conduits.","authors":"Yusuke Hattori, Shinsuke Takeda, Takuya Usami, Ryutaro Shibata, Hiroshi Takahashi, Yuji Joyo, Yohei Kawaguchi, Hideki Okamoto, Hideki Murakami, Permsak Paholpak, Hideyuki Ota","doi":"10.1055/a-2387-3282","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong> In the treatment of peripheral nerve injuries with nerve defects, second-generation collagen-based conduits, such as Renerve® (Nipro, Osaka, Japan), have shown the potential for promoting nerve regeneration. However, there is concern related to the weak material properties. No previous studies have addressed the strength of the bridging model using collagen conduits. This study aimed to investigate the tensile strength and failure patterns in nerve defect models bridged with Renerve® conduits through biomechanical research.</p><p><strong>Methods: </strong> Using fresh chicken sciatic nerves, we examined the maximum failure load of four groups: bridging models using Renerve® with one suture (group A), with two sutures (group B), with three sutures (group C), and end-to-end neurorrhaphy models with two sutures (group N). Each group had eight specimens. We also evaluated failure patterns of the specimens.</p><p><strong>Results: </strong> Group N showed a significantly higher maximum failure load (0.96 ± 0.13 N) compared to groups A (0.23 ± 0.06 N, <i>p</i> < 0.0001), B (0.29 ± 0.05 N, <i>p</i> < 0.0001), and C (0.40 ± 0.10 N, <i>p</i> < 0.0001). Regarding failure patterns, all specimens in group A showed nerve-end dislocation from the conduit. Two specimens in group B and three specimens in group C failed due to circumferential cracks in the conduit. Six specimens in group B and five specimens in group C exhibited cutting out of sutures from the conduit.</p><p><strong>Conclusion: </strong> This study suggests that the number of sutures in synthetic collagen nerve conduits has little effect on the maximum failure load. To take advantage of its biomaterial benefits, a period of postoperative range of motion restriction may be required.</p>","PeriodicalId":16949,"journal":{"name":"Journal of reconstructive microsurgery","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of reconstructive microsurgery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1055/a-2387-3282","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SURGERY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: In the treatment of peripheral nerve injuries with nerve defects, second-generation collagen-based conduits, such as Renerve® (Nipro, Osaka, Japan), have shown the potential for promoting nerve regeneration. However, there is concern related to the weak material properties. No previous studies have addressed the strength of the bridging model using collagen conduits. This study aimed to investigate the tensile strength and failure patterns in nerve defect models bridged with Renerve® conduits through biomechanical research.
Methods: Using fresh chicken sciatic nerves, we examined the maximum failure load of four groups: bridging models using Renerve® with one suture (group A), with two sutures (group B), with three sutures (group C), and end-to-end neurorrhaphy models with two sutures (group N). Each group had eight specimens. We also evaluated failure patterns of the specimens.
Results: Group N showed a significantly higher maximum failure load (0.96 ± 0.13 N) compared to groups A (0.23 ± 0.06 N, p < 0.0001), B (0.29 ± 0.05 N, p < 0.0001), and C (0.40 ± 0.10 N, p < 0.0001). Regarding failure patterns, all specimens in group A showed nerve-end dislocation from the conduit. Two specimens in group B and three specimens in group C failed due to circumferential cracks in the conduit. Six specimens in group B and five specimens in group C exhibited cutting out of sutures from the conduit.
Conclusion: This study suggests that the number of sutures in synthetic collagen nerve conduits has little effect on the maximum failure load. To take advantage of its biomaterial benefits, a period of postoperative range of motion restriction may be required.
期刊介绍:
The Journal of Reconstructive Microsurgery is a peer-reviewed, indexed journal that provides an international forum for the publication of articles focusing on reconstructive microsurgery and complex reconstructive surgery. The journal was originally established in 1984 for the microsurgical community to publish and share academic papers.
The Journal of Reconstructive Microsurgery provides the latest in original research spanning basic laboratory, translational, and clinical investigations. Review papers cover current topics in complex reconstruction and microsurgery. In addition, special sections discuss new technologies, innovations, materials, and significant problem cases.
The journal welcomes controversial topics, editorial comments, book reviews, and letters to the Editor, in order to complete the balanced spectrum of information available in the Journal of Reconstructive Microsurgery. All articles undergo stringent peer review by international experts in the specialty.