{"title":"Correlation between Chemical Fertilization Practices, Phytochemical Response, and Biological Activities of Cannabis sativa L.","authors":"Marianela Simonutti, Gisela Seimandi, Geraldina Richard, Juan Marcelo Zabala, Marcos Derita","doi":"10.2174/0113862073319590240801112332","DOIUrl":null,"url":null,"abstract":"<p><p>The plant kingdom offers a wealth of molecules with potential efficacy against various human, animal, and plant crop infections and illnesses. Cannabis sativa L. has garnered significant attention in recent decades within the scientific community due to its broad biological activity. Key bioactive compounds such as cannabinoids and phenolic compounds have been isolated from this plant, driving its bioactivity. Numerous studies have highlighted the impact of different agronomic practices, particularly fertilization, on the phytochemical composition, notably altering the percentage of various chemical groups. This review aims to present updated fertilization recommendations, crop requirements, and their implications for the chemical composition of C. sativa plants, along with major biological properties documented in the literature over the past five years. Various databases were utilized to summarize information on fertilization and crop requirements, chemical composition, bioassays employed, natural products (extracts or isolated compounds), and bioactivity results. Through this review, it is evident that C. sativa holds promise as a source of novel molecules for treating diverse human diseases. Nonetheless, careful consideration of agronomic practices is essential to optimize chemical composition and maximize therapeutic potential.</p>","PeriodicalId":10491,"journal":{"name":"Combinatorial chemistry & high throughput screening","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorial chemistry & high throughput screening","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113862073319590240801112332","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The plant kingdom offers a wealth of molecules with potential efficacy against various human, animal, and plant crop infections and illnesses. Cannabis sativa L. has garnered significant attention in recent decades within the scientific community due to its broad biological activity. Key bioactive compounds such as cannabinoids and phenolic compounds have been isolated from this plant, driving its bioactivity. Numerous studies have highlighted the impact of different agronomic practices, particularly fertilization, on the phytochemical composition, notably altering the percentage of various chemical groups. This review aims to present updated fertilization recommendations, crop requirements, and their implications for the chemical composition of C. sativa plants, along with major biological properties documented in the literature over the past five years. Various databases were utilized to summarize information on fertilization and crop requirements, chemical composition, bioassays employed, natural products (extracts or isolated compounds), and bioactivity results. Through this review, it is evident that C. sativa holds promise as a source of novel molecules for treating diverse human diseases. Nonetheless, careful consideration of agronomic practices is essential to optimize chemical composition and maximize therapeutic potential.
期刊介绍:
Combinatorial Chemistry & High Throughput Screening (CCHTS) publishes full length original research articles and reviews/mini-reviews dealing with various topics related to chemical biology (High Throughput Screening, Combinatorial Chemistry, Chemoinformatics, Laboratory Automation and Compound management) in advancing drug discovery research. Original research articles and reviews in the following areas are of special interest to the readers of this journal:
Target identification and validation
Assay design, development, miniaturization and comparison
High throughput/high content/in silico screening and associated technologies
Label-free detection technologies and applications
Stem cell technologies
Biomarkers
ADMET/PK/PD methodologies and screening
Probe discovery and development, hit to lead optimization
Combinatorial chemistry (e.g. small molecules, peptide, nucleic acid or phage display libraries)
Chemical library design and chemical diversity
Chemo/bio-informatics, data mining
Compound management
Pharmacognosy
Natural Products Research (Chemistry, Biology and Pharmacology of Natural Products)
Natural Product Analytical Studies
Bipharmaceutical studies of Natural products
Drug repurposing
Data management and statistical analysis
Laboratory automation, robotics, microfluidics, signal detection technologies
Current & Future Institutional Research Profile
Technology transfer, legal and licensing issues
Patents.