Jeong Sik Kong, Joeng Ju Kim, Leonardo Riva, Paola Serena Ginestra, Dong-Woo Cho
{"title":"<i>In vitro</i>three-dimensional volumetric printing of vitreous body models using decellularized extracellular matrix bioink.","authors":"Jeong Sik Kong, Joeng Ju Kim, Leonardo Riva, Paola Serena Ginestra, Dong-Woo Cho","doi":"10.1088/1758-5090/ad6f46","DOIUrl":null,"url":null,"abstract":"<p><p>Hyalocytes, which are considered to originate from the monocyte/macrophage lineage, play active roles in vitreous collagen and hyaluronic acid synthesis. Obtaining a hyalocyte-compatible bioink during the 3D bioprinting of eye models is challenging. In this study, we investigated the suitability of a cartilage-decellularized extracellular matrix (dECM)-based bioink for printing a vitreous body model. Given that achieving a 3D structure and environment identical to those of the vitreous body necessitates good printability and biocompatibility, we examined the mechanical and biological properties of the developed dECM-based bioink. Furthermore, we proposed a 3D bioprinting strategy for volumetric vitreous body fabrication that supports cell viability, transparency, and self-sustainability. The construction of a 3D structure composed of bioink microfibers resulted in improved transparency and hyalocyte-like macrophage activity in volumetric vitreous mimetics, mimicking real vitreous bodies. The results indicate that our 3D structure could serve as a platform for drug testing in disease models and demonstrate that the proposed printing technology, utilizing a dECM-based bioink and volumetric vitreous body, has the potential to facilitate the development of advanced eye models for future studies on floater formation and visual disorders.</p>","PeriodicalId":8964,"journal":{"name":"Biofabrication","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofabrication","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1758-5090/ad6f46","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Hyalocytes, which are considered to originate from the monocyte/macrophage lineage, play active roles in vitreous collagen and hyaluronic acid synthesis. Obtaining a hyalocyte-compatible bioink during the 3D bioprinting of eye models is challenging. In this study, we investigated the suitability of a cartilage-decellularized extracellular matrix (dECM)-based bioink for printing a vitreous body model. Given that achieving a 3D structure and environment identical to those of the vitreous body necessitates good printability and biocompatibility, we examined the mechanical and biological properties of the developed dECM-based bioink. Furthermore, we proposed a 3D bioprinting strategy for volumetric vitreous body fabrication that supports cell viability, transparency, and self-sustainability. The construction of a 3D structure composed of bioink microfibers resulted in improved transparency and hyalocyte-like macrophage activity in volumetric vitreous mimetics, mimicking real vitreous bodies. The results indicate that our 3D structure could serve as a platform for drug testing in disease models and demonstrate that the proposed printing technology, utilizing a dECM-based bioink and volumetric vitreous body, has the potential to facilitate the development of advanced eye models for future studies on floater formation and visual disorders.
期刊介绍:
Biofabrication is dedicated to advancing cutting-edge research on the utilization of cells, proteins, biological materials, and biomaterials as fundamental components for the construction of biological systems and/or therapeutic products. Additionally, it proudly serves as the official journal of the International Society for Biofabrication (ISBF).