Separable effects for adherence.

IF 5 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH
Kerollos Nashat Wanis, Mats Julius Stensrud, Aaron Leor Sarvet
{"title":"Separable effects for adherence.","authors":"Kerollos Nashat Wanis, Mats Julius Stensrud, Aaron Leor Sarvet","doi":"10.1093/aje/kwae277","DOIUrl":null,"url":null,"abstract":"<p><p>Comparing different medications is complicated when adherence to these medications differs. We can overcome the adherence issue by assessing effectiveness under sustained use, as in usual causal \"per-protocol\" estimands. However, when sustained use is challenging to satisfy in practice, the usefulness of these estimands can be limited. Here we propose a different class of estimands: separable effects for adherence. These estimands compare modified medications, holding fixed a component responsible for nonadherence. Under assumptions about treatment components' mechanisms of effect, a separable effects estimand can quantify the effectiveness of medication initiation strategies on an outcome of interest under the adherence mechanism of one of the medications. These assumptions are amenable to interrogation by subject-matter experts and can be evaluated using causal graphs. We describe an algorithm for constructing causal graphs for separable effects, illustrate how these graphs can be used to reason about assumptions required for identification, and provide semi-parametric weighted estimators. This article is part of a Special Collection on Pharmacoepidemiology.</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":" ","pages":"1122-1130"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwae277","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Comparing different medications is complicated when adherence to these medications differs. We can overcome the adherence issue by assessing effectiveness under sustained use, as in usual causal "per-protocol" estimands. However, when sustained use is challenging to satisfy in practice, the usefulness of these estimands can be limited. Here we propose a different class of estimands: separable effects for adherence. These estimands compare modified medications, holding fixed a component responsible for nonadherence. Under assumptions about treatment components' mechanisms of effect, a separable effects estimand can quantify the effectiveness of medication initiation strategies on an outcome of interest under the adherence mechanism of one of the medications. These assumptions are amenable to interrogation by subject-matter experts and can be evaluated using causal graphs. We describe an algorithm for constructing causal graphs for separable effects, illustrate how these graphs can be used to reason about assumptions required for identification, and provide semi-parametric weighted estimators. This article is part of a Special Collection on Pharmacoepidemiology.

可分离的坚持效果。
如果对不同药物的依从性不同,对不同药物进行比较就会变得复杂。我们可以通过评估持续使用情况下的疗效来克服依从性问题,就像通常的因果 "按方案 "估算一样。然而,当持续使用在实践中难以满足时,这些估计值的作用就会受到限制。在此,我们提出了一类不同的估计指标:可分离的依从性效应。这些估计值比较了改良药物,并固定了造成不依从的成分。在假设治疗成分的作用机制的前提下,可分离效应估计值可以量化药物启动策略在其中一种药物的依从性机制下对相关结果的有效性。这些假设可由专题专家进行质询,并可使用因果图进行评估。我们介绍了一种为可分离效应构建因果图的算法,说明了如何利用这些因果图来推理识别所需的假设,并提供了半参数加权估计器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
American journal of epidemiology
American journal of epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
7.40
自引率
4.00%
发文量
221
审稿时长
3-6 weeks
期刊介绍: The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research. It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信