Optimizing Energy Storage Performance in Polymer Dielectrics through Dual Strategies: Constructing “Peaked” Barrieras and Enhancing Carrier Scattering

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zhaotong Meng, Tiandong Zhang, Changhai Zhang, Zhi-Min Dang, Qingguo Chi
{"title":"Optimizing Energy Storage Performance in Polymer Dielectrics through Dual Strategies: Constructing “Peaked” Barrieras and Enhancing Carrier Scattering","authors":"Zhaotong Meng,&nbsp;Tiandong Zhang,&nbsp;Changhai Zhang,&nbsp;Zhi-Min Dang,&nbsp;Qingguo Chi","doi":"10.1002/adfm.202403402","DOIUrl":null,"url":null,"abstract":"<p>Dielectric capacitors play a pivotal role in the advancement of electric power systems and emerging energy technologies. However, the deterioration of dielectric performance in energy storage materials at elevated temperatures represents a significant challenge. In this study, organic electron-scattering agents into polyetherimide (PEI) are introduced, creating a “peaked barrier” to impede charge carrier transport. By doping PEI with an ultralow volume fraction (0.8%) of the organic molecule filler 4-(dimethylamino)phenylboronic acid (4-NB), the electron-repelling nature of 4-NB is leveraged in order to regulate charge carrier injection and transport in a synergistic manner. Consequently, the discharged energy density of the PEI composite material increases to 7.93 J cm<sup>−</sup><sup>3</sup> (720 kV mm<sup>−1</sup>) at 30 °C. At 150 °C, the discharged energy density increases to 5.21 J cm<sup>−</sup><sup>3</sup> (580 kV mm<sup>−1</sup>). In both cases, the charge and discharge efficiencies are maintained at 90%. It is noteworthy that the prepared PEI composite material also exhibits excellent charge dissipation characteristics, maintaining stable charge and discharge efficiency even after 50 000 charge–discharge cycles. In summary, the study's design concept systematically optimizes the processes of charge carrier injection, transport, and dissipation. This approach offers a novel perspective for the development of dielectrics that are suitable for long-term energy storage.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"34 39","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202403402","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Dielectric capacitors play a pivotal role in the advancement of electric power systems and emerging energy technologies. However, the deterioration of dielectric performance in energy storage materials at elevated temperatures represents a significant challenge. In this study, organic electron-scattering agents into polyetherimide (PEI) are introduced, creating a “peaked barrier” to impede charge carrier transport. By doping PEI with an ultralow volume fraction (0.8%) of the organic molecule filler 4-(dimethylamino)phenylboronic acid (4-NB), the electron-repelling nature of 4-NB is leveraged in order to regulate charge carrier injection and transport in a synergistic manner. Consequently, the discharged energy density of the PEI composite material increases to 7.93 J cm3 (720 kV mm−1) at 30 °C. At 150 °C, the discharged energy density increases to 5.21 J cm3 (580 kV mm−1). In both cases, the charge and discharge efficiencies are maintained at 90%. It is noteworthy that the prepared PEI composite material also exhibits excellent charge dissipation characteristics, maintaining stable charge and discharge efficiency even after 50 000 charge–discharge cycles. In summary, the study's design concept systematically optimizes the processes of charge carrier injection, transport, and dissipation. This approach offers a novel perspective for the development of dielectrics that are suitable for long-term energy storage.

Abstract Image

Abstract Image

通过双重策略优化聚合物电介质的储能性能:构建 "尖峰 "势垒和增强载流子散射
电介质电容器在电力系统和新兴能源技术的发展中发挥着举足轻重的作用。然而,储能材料在高温下的介电性能劣化是一项重大挑战。本研究在聚醚酰亚胺(PEI)中引入了有机电子散射剂,从而形成了阻碍电荷载流子传输的 "峰值势垒"。通过在聚醚酰亚胺中掺入超低体积分数(0.8%)的有机分子填充剂 4-(二甲基氨基)苯硼酸(4-NB),利用 4-NB 的电子斥力特性,以协同方式调节电荷载流子的注入和传输。因此,在 30 °C 时,PEI 复合材料的放电能量密度增至 7.93 J cm-3 (720 kV mm-1)。在 150 °C 时,放电能量密度增至 5.21 J cm-3 (580 kV mm-1)。在这两种情况下,充放电效率都保持在 90%。值得注意的是,所制备的 PEI 复合材料还具有出色的电荷耗散特性,即使在 50 000 次充放电循环后仍能保持稳定的充放电效率。总之,该研究的设计理念系统地优化了电荷载流子的注入、传输和耗散过程。这种方法为开发适合长期储能的电介质提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信