Laura J. Thompson, Sotirios V. Archontoulis, Laila A. Puntel
{"title":"Simulating within-field spatial and temporal corn yield response to nitrogen with APSIM model","authors":"Laura J. Thompson, Sotirios V. Archontoulis, Laila A. Puntel","doi":"10.1007/s11119-024-10178-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Context</h3><p>Process-based crop growth models can explain soil and crop dynamics that influence the optimal N rate for crop production. Currently, there is a lack of understanding regarding the accuracy of process-based models for site-specific zones within fields, as well as the key factors that need to be considered when calibrating these models for zone-specific economic optimum N rate (EONR).</p><h3 data-test=\"abstract-sub-heading\">Objective</h3><p>We calibrated the Agricultural Production Systems sIMulator (APSIM) model in contrasting zones within fields, quantified the model performance, and used the calibrated model to develop long-term corn yield response to N to assess the temporal variability between zones and sites to assist decision making.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We conducted four N rate experiments (2 fields × 2 zones within a field) over two years in southeast Nebraska. Experimental data were used to calibrate and test the APSIM model. APSIM simulated corn yield response to N for each zone and site was obtained by running numerous iterations of the calibrated model at different N rates. Observed and simulated corn yield response to N rate were analyzed with statistical models to estimate the EONR.</p><h3 data-test=\"abstract-sub-heading\">Results and conclusions</h3><p>The APSIM model predicted corn yield over 11 historical years with a relative root mean square error (RRMSE) of 12% and yield at EONR in the N studies with RRMSE of 8.8%. The simulated EONR was lower than the observed EONR across sites, years, and zones with greater error than yield. The simulated yield increase with N fertilization was under-estimated in fine textured soils and over-estimated in medium textured soils. Long-term corn yield response to N showed that temporal variation in simulated EONR was greater than spatial variation. Long-term EONR and yield at EONR increased with increasing rainfall, while yield at zero N was greatest in normal years. Temporal variation was driven primarily by year-to-year variation in N loss (CV of 67% ± 9.5). Soil texture, hydrological properties, water table, and tile drainage were key variables for accurate site-specific model calibration. Improvements in simulating site-specific EONR may be realized by including in-situ or remotely sensed data for better estimation of N dynamics. We concluded that APSIM can provide valuable insights into systems dynamics in this region, but it can’t provide precise N-rate estimates. Our study contributes to understanding of the within-field variability using simulation modeling.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"35 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10178-1","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Process-based crop growth models can explain soil and crop dynamics that influence the optimal N rate for crop production. Currently, there is a lack of understanding regarding the accuracy of process-based models for site-specific zones within fields, as well as the key factors that need to be considered when calibrating these models for zone-specific economic optimum N rate (EONR).
Objective
We calibrated the Agricultural Production Systems sIMulator (APSIM) model in contrasting zones within fields, quantified the model performance, and used the calibrated model to develop long-term corn yield response to N to assess the temporal variability between zones and sites to assist decision making.
Methods
We conducted four N rate experiments (2 fields × 2 zones within a field) over two years in southeast Nebraska. Experimental data were used to calibrate and test the APSIM model. APSIM simulated corn yield response to N for each zone and site was obtained by running numerous iterations of the calibrated model at different N rates. Observed and simulated corn yield response to N rate were analyzed with statistical models to estimate the EONR.
Results and conclusions
The APSIM model predicted corn yield over 11 historical years with a relative root mean square error (RRMSE) of 12% and yield at EONR in the N studies with RRMSE of 8.8%. The simulated EONR was lower than the observed EONR across sites, years, and zones with greater error than yield. The simulated yield increase with N fertilization was under-estimated in fine textured soils and over-estimated in medium textured soils. Long-term corn yield response to N showed that temporal variation in simulated EONR was greater than spatial variation. Long-term EONR and yield at EONR increased with increasing rainfall, while yield at zero N was greatest in normal years. Temporal variation was driven primarily by year-to-year variation in N loss (CV of 67% ± 9.5). Soil texture, hydrological properties, water table, and tile drainage were key variables for accurate site-specific model calibration. Improvements in simulating site-specific EONR may be realized by including in-situ or remotely sensed data for better estimation of N dynamics. We concluded that APSIM can provide valuable insights into systems dynamics in this region, but it can’t provide precise N-rate estimates. Our study contributes to understanding of the within-field variability using simulation modeling.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.