IMO2020 Regulations Accelerate Global Warming by up to 3 Years in UKESM1

IF 7.3 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Earths Future Pub Date : 2024-08-14 DOI:10.1029/2024EF005011
G. Jordan, M. Henry
{"title":"IMO2020 Regulations Accelerate Global Warming by up to 3 Years in UKESM1","authors":"G. Jordan,&nbsp;M. Henry","doi":"10.1029/2024EF005011","DOIUrl":null,"url":null,"abstract":"<p>The International Maritime Organization (IMO) introduced new regulations on the sulfur content of shipping emissions in 2020 (IMO2020). Estimates of the climatic impact of this global reduction in anthropogenic sulfate aerosols vary widely. Here, we contribute to narrowing this uncertainty with two sets of climate model simulations using UKESM1. Using fixed sea-surface temperature atmosphere-only simulations, we estimate an IMO2020 global effective radiative forcing of 0.139 ± 0.019 Wm<sup>−2</sup> and show that most of this forcing is due to aerosol-induced changes to cloud properties. Using coupled ocean-atmosphere simulations, we note significant changes in cloud top droplet number concentration and size across regions with high shipping traffic density, and—in the North Atlantic and North Pacific—these microphysical changes translate to a decrease in cloud albedo. We show that IMO2020 increases global annual surface temperature on average by 0.046 ± 0.010°C across 2020–2029; approximately 2–3 years of global warming. Furthermore, our model simulations show that IMO2020 helps to explain the exceptional warming in 2023, but other factors are needed to fully account for it. The year 2023 also had an exceptionally large decrease in reflected shortwave radiation at the top-of-atmosphere. Our results show that IMO2020 made that more likely, yet the observations are within the variability of simulations without the reduction in shipping emissions. To better understand the climatic impacts of IMO2020, a model intercomparison project would be valuable whilst the community waits for a more complete observational record.</p>","PeriodicalId":48748,"journal":{"name":"Earths Future","volume":"12 8","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EF005011","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earths Future","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EF005011","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The International Maritime Organization (IMO) introduced new regulations on the sulfur content of shipping emissions in 2020 (IMO2020). Estimates of the climatic impact of this global reduction in anthropogenic sulfate aerosols vary widely. Here, we contribute to narrowing this uncertainty with two sets of climate model simulations using UKESM1. Using fixed sea-surface temperature atmosphere-only simulations, we estimate an IMO2020 global effective radiative forcing of 0.139 ± 0.019 Wm−2 and show that most of this forcing is due to aerosol-induced changes to cloud properties. Using coupled ocean-atmosphere simulations, we note significant changes in cloud top droplet number concentration and size across regions with high shipping traffic density, and—in the North Atlantic and North Pacific—these microphysical changes translate to a decrease in cloud albedo. We show that IMO2020 increases global annual surface temperature on average by 0.046 ± 0.010°C across 2020–2029; approximately 2–3 years of global warming. Furthermore, our model simulations show that IMO2020 helps to explain the exceptional warming in 2023, but other factors are needed to fully account for it. The year 2023 also had an exceptionally large decrease in reflected shortwave radiation at the top-of-atmosphere. Our results show that IMO2020 made that more likely, yet the observations are within the variability of simulations without the reduction in shipping emissions. To better understand the climatic impacts of IMO2020, a model intercomparison project would be valuable whilst the community waits for a more complete observational record.

Abstract Image

IMO2020 法规将英国的全球变暖速度加快达 3 年之久ESM1
国际海事组织(IMO)于 2020 年出台了关于航运排放硫含量的新规定(IMO2020)。对全球人为硫酸盐气溶胶减少对气候影响的估计差异很大。在此,我们利用 UKESM1 进行了两组气候模型模拟,以缩小这种不确定性。利用固定海面温度的纯大气模拟,我们估算出 IMO2020 全球有效辐射强迫为 0.139 ± 0.019 Wm-2,并表明该强迫的大部分是由于气溶胶引起的云特性变化造成的。利用海洋-大气耦合模拟,我们注意到在航运密度高的地区,云顶液滴数量浓度和大小发生了显著变化,在北大西洋和北太平洋,这些微物理变化转化为云反照率的下降。我们的研究表明,在 2020-2029 年期间,IMO2020 使全球年平均表面温度上升了 0.046 ± 0.010°C,大约相当于全球变暖 2-3 年。此外,我们的模型模拟显示,IMO2020 有助于解释 2023 年的异常变暖,但还需要其他因素才能完全解释。2023 年大气顶部反射的短波辐射也出现了异常大幅度的下降。我们的研究结果表明,IMO2020 使这种情况更有可能发生,但观测结果却在没有减少航运排放的情况下的模拟变异范围内。为了更好地了解 IMO2020 对气候的影响,在社会各界等待更完整的观测记录的同时,一个模型相互比较项目将是非常有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earths Future
Earths Future ENVIRONMENTAL SCIENCESGEOSCIENCES, MULTIDI-GEOSCIENCES, MULTIDISCIPLINARY
CiteScore
11.00
自引率
7.30%
发文量
260
审稿时长
16 weeks
期刊介绍: Earth’s Future: A transdisciplinary open access journal, Earth’s Future focuses on the state of the Earth and the prediction of the planet’s future. By publishing peer-reviewed articles as well as editorials, essays, reviews, and commentaries, this journal will be the preeminent scholarly resource on the Anthropocene. It will also help assess the risks and opportunities associated with environmental changes and challenges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信