{"title":"Asymptotic behavior of Laplacian eigenvalues of subspace inclusion graphs","authors":"Alan Lew","doi":"10.1112/jlms.12972","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <annotation>$\\text{Fl}_{n,q}$</annotation>\n </semantics></math> be the simplicial complex whose vertices are the nontrivial subspaces of <span></span><math>\n <semantics>\n <msubsup>\n <mi>F</mi>\n <mi>q</mi>\n <mi>n</mi>\n </msubsup>\n <annotation>$\\mathbb {F}_q^n$</annotation>\n </semantics></math> and whose simplices correspond to families of subspaces forming a flag. Let <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>Δ</mi>\n <mi>k</mi>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta ^{+}_k(\\text{Fl}_{n,q})$</annotation>\n </semantics></math> be the <span></span><math>\n <semantics>\n <mi>k</mi>\n <annotation>$k$</annotation>\n </semantics></math>-dimensional weighted upper Laplacian on <span></span><math>\n <semantics>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <annotation>$ \\text{Fl}_{n,q}$</annotation>\n </semantics></math>. The spectrum of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>Δ</mi>\n <mi>k</mi>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta ^{+}_k(\\text{Fl}_{n,q})$</annotation>\n </semantics></math> was first studied by Garland, who obtained a lower bound on its nonzero eigenvalues. Here, we focus on the <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$k=0$</annotation>\n </semantics></math> case. We determine the asymptotic behavior of the eigenvalues of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>Δ</mi>\n <mn>0</mn>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta _{0}^{+}(\\text{Fl}_{n,q})$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math> tends to infinity. In particular, we show that for large enough <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>Δ</mi>\n <mn>0</mn>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta _{0}^{+}(\\text{Fl}_{n,q})$</annotation>\n </semantics></math> has exactly <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>/</mo>\n <mn>4</mn>\n </mfenced>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$\\left\\lfloor n^2/4\\right\\rfloor +2$</annotation>\n </semantics></math> distinct eigenvalues, and that every eigenvalue <span></span><math>\n <semantics>\n <mrow>\n <mi>λ</mi>\n <mo>≠</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$\\lambda \\ne 0,n-1$</annotation>\n </semantics></math> of <span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>Δ</mi>\n <mn>0</mn>\n <mo>+</mo>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <msub>\n <mtext>Fl</mtext>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msub>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\Delta _{0}^{+}(\\text{Fl}_{n,q})$</annotation>\n </semantics></math> tends to <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$n-2$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mi>q</mi>\n <annotation>$q$</annotation>\n </semantics></math> goes to infinity. This solves the zero-dimensional case of a conjecture of Papikian.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1112/jlms.12972","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12972","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Let be the simplicial complex whose vertices are the nontrivial subspaces of and whose simplices correspond to families of subspaces forming a flag. Let be the -dimensional weighted upper Laplacian on . The spectrum of was first studied by Garland, who obtained a lower bound on its nonzero eigenvalues. Here, we focus on the case. We determine the asymptotic behavior of the eigenvalues of as tends to infinity. In particular, we show that for large enough , has exactly distinct eigenvalues, and that every eigenvalue of tends to as goes to infinity. This solves the zero-dimensional case of a conjecture of Papikian.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.