Front Cover: Synthesis of Sulfenamides from Benzoazole-2-thiones with Primary and Secondary Amines using Triphenylbismuth Dichloride-Mediated S−N Bond Formation Reaction (Asian J. Org. Chem. 8/2024)
Arisu Koyanagi, Dr. Yuki Murata, Dr. Mio Matsumura, Prof. Dr. Shuji Yasuike
{"title":"Front Cover: Synthesis of Sulfenamides from Benzoazole-2-thiones with Primary and Secondary Amines using Triphenylbismuth Dichloride-Mediated S−N Bond Formation Reaction (Asian J. Org. Chem. 8/2024)","authors":"Arisu Koyanagi, Dr. Yuki Murata, Dr. Mio Matsumura, Prof. Dr. Shuji Yasuike","doi":"10.1002/ajoc.202480801","DOIUrl":null,"url":null,"abstract":"<p>The cover design showcases a general method for the synthesis of sulfenamides from various benzoazole-2-thiones with amines using bismuth reagent. The brother′s azole-thiones and the sister′s amines being reacted with the bismuth reagent to produce the sulfenamide that blooms beautifully like fireworks. In the night sky, the S-N bond formation is depicted to resemble the Milky Way. The reactions of benzoazole-2-thiones with various primary or secondary amines in the presence of triphenylbismuth dichloride (Ph3BiCl2) at 60 °C in DMSO under aerobic conditions afforded the corresponding sulfenamides in moderate-to-excellent yields. This reaction is the first example of an efficient S–N bond formation reaction utilizing a lowtoxicity pentavalent organobismuth reagent under mild reaction conditions. The reaction will likely be applied to develop compounds with medicinal value or industrial utility. More information can be found in article number e202400138 by Yuki Murata, Shuji Yasuike, and co-workers.<figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure>\n </p>","PeriodicalId":130,"journal":{"name":"Asian Journal of Organic Chemistry","volume":"13 8","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ajoc.202480801","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ajoc.202480801","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
Abstract
The cover design showcases a general method for the synthesis of sulfenamides from various benzoazole-2-thiones with amines using bismuth reagent. The brother′s azole-thiones and the sister′s amines being reacted with the bismuth reagent to produce the sulfenamide that blooms beautifully like fireworks. In the night sky, the S-N bond formation is depicted to resemble the Milky Way. The reactions of benzoazole-2-thiones with various primary or secondary amines in the presence of triphenylbismuth dichloride (Ph3BiCl2) at 60 °C in DMSO under aerobic conditions afforded the corresponding sulfenamides in moderate-to-excellent yields. This reaction is the first example of an efficient S–N bond formation reaction utilizing a lowtoxicity pentavalent organobismuth reagent under mild reaction conditions. The reaction will likely be applied to develop compounds with medicinal value or industrial utility. More information can be found in article number e202400138 by Yuki Murata, Shuji Yasuike, and co-workers.
期刊介绍:
Organic chemistry is the fundamental science that stands at the heart of chemistry, biology, and materials science. Research in these areas is vigorous and truly international, with three major regions making almost equal contributions: America, Europe and Asia. Asia now has its own top international organic chemistry journal—the Asian Journal of Organic Chemistry (AsianJOC)
The AsianJOC is designed to be a top-ranked international research journal and publishes primary research as well as critical secondary information from authors across the world. The journal covers organic chemistry in its entirety. Authors and readers come from academia, the chemical industry, and government laboratories.