Microneedle-assisted transdermal delivery of carvedilol nanosuspension for the treatment of hypertension

Anushri Deshpande, Vidhi Mer, Darshana Patel and Hetal Thakkar
{"title":"Microneedle-assisted transdermal delivery of carvedilol nanosuspension for the treatment of hypertension","authors":"Anushri Deshpande, Vidhi Mer, Darshana Patel and Hetal Thakkar","doi":"10.1039/D4PM00038B","DOIUrl":null,"url":null,"abstract":"<p >Carvedilol nanosuspension loaded microneedles patch was formulated and characterized by particle size,  zeta potential, solubility, Transmission Electron Microscopy, X-Ray Diffraction, in-vitro release and <em>in-vivo</em> pharmacokinetic studies A nanosuspension-loaded microneedle patch was successfully prepared and characterized by optical microscopy, scanning electron microscopy, axial fracture force, <em>in vitro</em> dissolution study, % drug content, <em>in vitro</em> drug-release study, <em>ex vivo</em> studies, an <em>in vivo</em> study, and stability studies. The particle size, PDI, and zeta potential of the carvedilol nanosuspension were found to be 179.6 ± 1.15 nm, 0.163 ± 0.01, and −14.2 ± 0.55 mV, respectively. There was a 9.21-fold increase in the saturation solubility of the carvedilol nanosuspension. Nanosuspension-loaded microneedles contained 98.78 ± 0.12% carvedilol. The relative bioavailability of the carvedilol from the microneedle patch was found to be 2.82-fold higher compared to the marketed formulation. The drug release from the microneedles followed zero-order kinetics, which is desirable in the case of transdermal delivery. The stability study indicated that the prepared formulation was stable under the storage conditions used. Thus, the developed transdermal microneedle patch containing the carvedilol nanosuspension seems to be a promising approach to foster greater patient compliance for the management of hypertension.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 3","pages":" 472-483"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d4pm00038b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/pm/d4pm00038b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Carvedilol nanosuspension loaded microneedles patch was formulated and characterized by particle size,  zeta potential, solubility, Transmission Electron Microscopy, X-Ray Diffraction, in-vitro release and in-vivo pharmacokinetic studies A nanosuspension-loaded microneedle patch was successfully prepared and characterized by optical microscopy, scanning electron microscopy, axial fracture force, in vitro dissolution study, % drug content, in vitro drug-release study, ex vivo studies, an in vivo study, and stability studies. The particle size, PDI, and zeta potential of the carvedilol nanosuspension were found to be 179.6 ± 1.15 nm, 0.163 ± 0.01, and −14.2 ± 0.55 mV, respectively. There was a 9.21-fold increase in the saturation solubility of the carvedilol nanosuspension. Nanosuspension-loaded microneedles contained 98.78 ± 0.12% carvedilol. The relative bioavailability of the carvedilol from the microneedle patch was found to be 2.82-fold higher compared to the marketed formulation. The drug release from the microneedles followed zero-order kinetics, which is desirable in the case of transdermal delivery. The stability study indicated that the prepared formulation was stable under the storage conditions used. Thus, the developed transdermal microneedle patch containing the carvedilol nanosuspension seems to be a promising approach to foster greater patient compliance for the management of hypertension.

Abstract Image

微针辅助经皮给药卡维地洛纳米悬浮液用于治疗高血压
成功制备了卡维地洛纳米悬浮液负载微针贴片,并通过粒度、zeta电位、溶解度、透射电子显微镜、X射线衍射、体外释放和体内药代动力学研究对其进行了表征 成功制备了卡维地洛纳米悬浮液负载微针贴片,并通过光学显微镜、扫描电子显微镜、轴向断裂力、体外溶解度研究、药物百分含量、体外药物释放研究、体外研究、体内研究和稳定性研究对其进行了表征。结果发现,卡维地洛纳米悬浮液的粒度、PDI 和 zeta 电位分别为 179.6 ± 1.15 nm、0.163 ± 0.01 和 -14.2 ± 0.55 mV。卡维地洛纳米悬浮液的饱和溶解度增加了 9.21 倍。纳米悬浮液负载的微针含有 98.78 ± 0.12% 的卡维地洛。与市售制剂相比,微针贴片中卡维地洛的相对生物利用度提高了 2.82 倍。微针的药物释放遵循零阶动力学,这在透皮给药的情况下是理想的。稳定性研究表明,制备的制剂在所用的储存条件下是稳定的。因此,所开发的含有卡维地洛纳米悬浮液的透皮微针贴片似乎是一种很有前景的方法,可提高患者对高血压治疗的依从性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信