Fabrication of miconazole nitrate solid lipid nanoparticle loaded microneedle patches for the treatment of Candida albicans biofilms

Muhammad Sohail Arshad, Aqsa Ayub, Saman Zafar, Sadia Jafar Rana, Syed Aun Muhammad, Ambreen Aleem, Ekhoerose Onaiwu, Kazem Nazari, Ming-Wei Chang and Zeeshan Ahmad
{"title":"Fabrication of miconazole nitrate solid lipid nanoparticle loaded microneedle patches for the treatment of Candida albicans biofilms","authors":"Muhammad Sohail Arshad, Aqsa Ayub, Saman Zafar, Sadia Jafar Rana, Syed Aun Muhammad, Ambreen Aleem, Ekhoerose Onaiwu, Kazem Nazari, Ming-Wei Chang and Zeeshan Ahmad","doi":"10.1039/D4PM00042K","DOIUrl":null,"url":null,"abstract":"<p >The present study aimed to develop miconazole nitrate solid lipid nanoparticle (SLN) loaded polymeric microneedle (MN) patches (SPs) <em>via</em> the vacuum micromolding approach. The SLNs were fabricated through melt emulsification of stearic acid using Tween 80. SPs were prepared using chitosan, gelatin (as base materials) and polyethylene glycol 400 (as a plasticizer). The prepared formulations were evaluated for various physicochemical parameters, including particle size, polydispersity index, encapsulation efficiency, loading capacity (in the case of SLNs), folding endurance, % swelling and insertion ability (in the case of SPs). Scanning electron microscopy and differential scanning calorimetry (DSC) studies were carried out for morphological and thermal analysis, respectively. Phase analysis was carried out <em>via</em> X-ray diffraction (XRD). <em>In vitro</em> tensile strength, drug release, anti-biofilm activity and <em>in vivo</em> anti-biofilm activity were studied to assess the efficiency of the SLN loaded polymeric formulation. Miconazole nitrate containing SLNs appeared as smooth-surfaced aggregates and displayed a particle diameter of ∼224 nm, polydispersity index of ∼0.32, encapsulation efficiency of ∼88.88% and loading capacity of ∼8.88%. SPs exhibited evenly aligned, uniform-surfaced, sharp-tipped projections, with an acceptable folding endurance of ∼300 and % swelling of ∼359%. DSC and XRD results confirmed the incorporation of the drug within the solidified lipid matrix as an amorphous solid. The miconazole nitrate lipidic nanoparticle containing polymeric formulation exhibited a tensile strength ∼1.35 times lower than the pure drug loaded counterpart. During <em>in vitro</em> studies, SPs released ∼94% miconazole nitrate within 150 minutes and reduced the mass of the <em>Candida albicans</em> (<em>C. albicans</em>) biofilm by ∼79%. After 10 days of treatment with SPs, <em>C. albicans</em> infected wounds were healed, confirming that the prepared formulations can be used for the management of fungal biofilms.</p>","PeriodicalId":101141,"journal":{"name":"RSC Pharmaceutics","volume":" 3","pages":" 458-471"},"PeriodicalIF":0.0000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/pm/d4pm00042k?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Pharmaceutics","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/pm/d4pm00042k","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The present study aimed to develop miconazole nitrate solid lipid nanoparticle (SLN) loaded polymeric microneedle (MN) patches (SPs) via the vacuum micromolding approach. The SLNs were fabricated through melt emulsification of stearic acid using Tween 80. SPs were prepared using chitosan, gelatin (as base materials) and polyethylene glycol 400 (as a plasticizer). The prepared formulations were evaluated for various physicochemical parameters, including particle size, polydispersity index, encapsulation efficiency, loading capacity (in the case of SLNs), folding endurance, % swelling and insertion ability (in the case of SPs). Scanning electron microscopy and differential scanning calorimetry (DSC) studies were carried out for morphological and thermal analysis, respectively. Phase analysis was carried out via X-ray diffraction (XRD). In vitro tensile strength, drug release, anti-biofilm activity and in vivo anti-biofilm activity were studied to assess the efficiency of the SLN loaded polymeric formulation. Miconazole nitrate containing SLNs appeared as smooth-surfaced aggregates and displayed a particle diameter of ∼224 nm, polydispersity index of ∼0.32, encapsulation efficiency of ∼88.88% and loading capacity of ∼8.88%. SPs exhibited evenly aligned, uniform-surfaced, sharp-tipped projections, with an acceptable folding endurance of ∼300 and % swelling of ∼359%. DSC and XRD results confirmed the incorporation of the drug within the solidified lipid matrix as an amorphous solid. The miconazole nitrate lipidic nanoparticle containing polymeric formulation exhibited a tensile strength ∼1.35 times lower than the pure drug loaded counterpart. During in vitro studies, SPs released ∼94% miconazole nitrate within 150 minutes and reduced the mass of the Candida albicans (C. albicans) biofilm by ∼79%. After 10 days of treatment with SPs, C. albicans infected wounds were healed, confirming that the prepared formulations can be used for the management of fungal biofilms.

Abstract Image

用于治疗白色念珠菌生物膜的硝酸咪康唑固体脂质纳米颗粒微针贴片的制作
本研究旨在通过真空微成型方法,开发出负载聚合物微针(MN)贴片(SPs)的硝酸咪康唑固体脂质纳米粒子(SLN)。通过使用吐温 80 对硬脂酸进行熔融乳化,制备出了 SLN。用壳聚糖、明胶(作为基础材料)和聚乙二醇 400(作为增塑剂)制备了 SPs。对制备的制剂进行了各种理化参数的评估,包括粒度、多分散指数、封装效率、负载能力(就 SLNs 而言)、耐折性、膨胀率和插入能力(就 SPs 而言)。扫描电子显微镜和差示扫描量热法(DSC)研究分别用于形态分析和热分析。通过 X 射线衍射 (XRD) 进行了相分析。研究了体外拉伸强度、药物释放、抗生物膜活性和体内抗生物膜活性,以评估负载 SLN 的聚合物制剂的效率。含有硝酸咪康唑的 SLN 呈表面光滑的聚集体,颗粒直径为 224 nm,多分散指数为 0.32,封装效率为 88.88%,负载能力为 8.88%。SPs呈现出均匀排列、表面一致、尖锐的突起,耐折度为∼300,膨胀率为∼359%。DSC 和 XRD 结果证实,药物以无定形固体的形式融入了固化的脂质基质中。含有聚合物配方的硝酸咪康唑脂质纳米粒子的抗张强度比纯药物配方低 1.35 倍。在体外研究中,SPs 在 150 分钟内释放了 94% 的硝酸咪康唑,并使白色念珠菌(C. albicans)生物膜的质量减少了 79%。使用 SPs 治疗 10 天后,受白念珠菌感染的伤口痊愈,这证明制备的制剂可用于管理真菌生物膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信