{"title":"Sharp sub-Gaussian upper bounds for subsolutions of Trudinger’s equation on Riemannian manifolds","authors":"Philipp Sürig","doi":"10.1016/j.na.2024.113641","DOIUrl":null,"url":null,"abstract":"<div><p>We consider on Riemannian manifolds the nonlinear evolution equation <span><span><span><math><mrow><msub><mrow><mi>∂</mi></mrow><mrow><mi>t</mi></mrow></msub><mi>u</mi><mo>=</mo><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mrow><mo>(</mo><msup><mrow><mi>u</mi></mrow><mrow><mn>1</mn><mo>/</mo><mrow><mo>(</mo><mi>p</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>p</mi><mo>></mo><mn>1</mn></mrow></math></span>. This equation is also known as a doubly non-linear parabolic equation or Trudinger’s equation. We prove that weak subsolutions of this equation have a sub-Gaussian upper bound and prove that this upper bound is sharp for a specific class of manifolds including <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi></mrow></msup></math></span>.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0362546X24001603/pdfft?md5=d58d3972144f1e8175ec28d9bd63d444&pid=1-s2.0-S0362546X24001603-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0362546X24001603","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider on Riemannian manifolds the nonlinear evolution equation where . This equation is also known as a doubly non-linear parabolic equation or Trudinger’s equation. We prove that weak subsolutions of this equation have a sub-Gaussian upper bound and prove that this upper bound is sharp for a specific class of manifolds including .
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.