{"title":"The potential of RuBisCO in CO2 capture and utilization","authors":"Kamyll Dawn Cocon , Patricia Luis","doi":"10.1016/j.pecs.2024.101184","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon capture technology is currently considered one of the promising technologies to mitigate atmospheric CO<sub>2</sub> concentration. CO<sub>2</sub> capture and utilization (CCU) captures anthropogenic waste CO<sub>2</sub> and valorizes it into useful products, supporting a circular transition pathway towards carbon neutrality. Unfortunately, the thermodynamic stability of CO<sub>2</sub> requires a high-energy input for its conversion, resulting in processes with a net positive carbon footprint. The incorporation of enzymes as biocatalysts in a process is attractive, as it facilitates CO<sub>2</sub> conversion under ambient conditions. In Nature, the conversion of CO<sub>2</sub> into organic compounds is done through photosynthesis, using an enzyme called ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO). RuBisCO plays a central role in the natural assimilation of CO<sub>2</sub>, making it the enzyme chosen in Nature upon which all life forms depend. However, the slow carboxylation rate of RuBisCO (1–10/s) has caused it to be overlooked by faster enzymes such as carbonic anhydrase (CA), which has a carboxylation rate of 10<sup>6</sup>/s. Despite this, RuBisCO has a rate enhancement of 10<sup>8</sup> to 10<sup>10</sup> times higher than CA. Thus, this review aims to take a closer look at RuBisCO and examine its potential in CCU. Various aspects are considered, such as RuBisCO’s performance in comparison to other enzymes, approaches to overcome its limitations, its applications and implications in CCU, the valuable chemicals that can be derived from it, recent developments in RuBisCO-integrated processes, and its economic and environmental considerations. Through this, RuBisCO’s potential as one of the key enzymes in CCU will be explored.</p></div>","PeriodicalId":410,"journal":{"name":"Progress in Energy and Combustion Science","volume":"105 ","pages":"Article 101184"},"PeriodicalIF":32.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Energy and Combustion Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S036012852400042X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon capture technology is currently considered one of the promising technologies to mitigate atmospheric CO2 concentration. CO2 capture and utilization (CCU) captures anthropogenic waste CO2 and valorizes it into useful products, supporting a circular transition pathway towards carbon neutrality. Unfortunately, the thermodynamic stability of CO2 requires a high-energy input for its conversion, resulting in processes with a net positive carbon footprint. The incorporation of enzymes as biocatalysts in a process is attractive, as it facilitates CO2 conversion under ambient conditions. In Nature, the conversion of CO2 into organic compounds is done through photosynthesis, using an enzyme called ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO). RuBisCO plays a central role in the natural assimilation of CO2, making it the enzyme chosen in Nature upon which all life forms depend. However, the slow carboxylation rate of RuBisCO (1–10/s) has caused it to be overlooked by faster enzymes such as carbonic anhydrase (CA), which has a carboxylation rate of 106/s. Despite this, RuBisCO has a rate enhancement of 108 to 1010 times higher than CA. Thus, this review aims to take a closer look at RuBisCO and examine its potential in CCU. Various aspects are considered, such as RuBisCO’s performance in comparison to other enzymes, approaches to overcome its limitations, its applications and implications in CCU, the valuable chemicals that can be derived from it, recent developments in RuBisCO-integrated processes, and its economic and environmental considerations. Through this, RuBisCO’s potential as one of the key enzymes in CCU will be explored.
期刊介绍:
Progress in Energy and Combustion Science (PECS) publishes review articles covering all aspects of energy and combustion science. These articles offer a comprehensive, in-depth overview, evaluation, and discussion of specific topics. Given the importance of climate change and energy conservation, efficient combustion of fossil fuels and the development of sustainable energy systems are emphasized. Environmental protection requires limiting pollutants, including greenhouse gases, emitted from combustion and other energy-intensive systems. Additionally, combustion plays a vital role in process technology and materials science.
PECS features articles authored by internationally recognized experts in combustion, flames, fuel science and technology, and sustainable energy solutions. Each volume includes specially commissioned review articles providing orderly and concise surveys and scientific discussions on various aspects of combustion and energy. While not overly lengthy, these articles allow authors to thoroughly and comprehensively explore their subjects. They serve as valuable resources for researchers seeking knowledge beyond their own fields and for students and engineers in government and industrial research seeking comprehensive reviews and practical solutions.