Developing a dynamic oxygen migration-release model for enhanced understanding of Ce-materials reactivity

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Feipeng Bao , Xinyu Han , Kaijie Liu , Zeshu Zhang , Liwei Sun , Cheng Rao , Yibo Zhang , Xiangguang Yang
{"title":"Developing a dynamic oxygen migration-release model for enhanced understanding of Ce-materials reactivity","authors":"Feipeng Bao ,&nbsp;Xinyu Han ,&nbsp;Kaijie Liu ,&nbsp;Zeshu Zhang ,&nbsp;Liwei Sun ,&nbsp;Cheng Rao ,&nbsp;Yibo Zhang ,&nbsp;Xiangguang Yang","doi":"10.1016/j.ssi.2024.116654","DOIUrl":null,"url":null,"abstract":"<div><p>Oxygen atom migration within solid oxides exerts a profound affects material properties, yet a rigorous conceptual framework for quantifying dynamic migration has been absent. To bridge this gap, we have developed a dynamic oxygen migration-release model, employing the differential element method with comprehensive mathematical proof. This novel model elucidates the exponential decay in the oxygen release rate of metal oxides as a function of the liberated oxygen quantity. We refined the model to discern between the migration of interior (bulk) oxygen and the reactions of oxygen at the surface, providing experimental validation for the energy barriers associated with each migration process. Taking CeO<sub>2</sub> as a case study, our model predicted and corroborated the energy barrier for oxygen release under various temperatures and morphologies, aligning with Density Functional Theory (DFT) analysis. Furthermore, the model's versatility is evidenced by its applicability to a wide range of metal oxides, including ceria-zirconia solid solutions, manganese oxide, and iron oxide, suggesting a broad potential for universal application. The unveiled dynamics of oxygen migration and release provide a theoretical foundation for refining the design of functional metal oxides and lay the groundwork for a more precise assessment of their oxygen reactivity.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"415 ","pages":"Article 116654"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273824002029","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Oxygen atom migration within solid oxides exerts a profound affects material properties, yet a rigorous conceptual framework for quantifying dynamic migration has been absent. To bridge this gap, we have developed a dynamic oxygen migration-release model, employing the differential element method with comprehensive mathematical proof. This novel model elucidates the exponential decay in the oxygen release rate of metal oxides as a function of the liberated oxygen quantity. We refined the model to discern between the migration of interior (bulk) oxygen and the reactions of oxygen at the surface, providing experimental validation for the energy barriers associated with each migration process. Taking CeO2 as a case study, our model predicted and corroborated the energy barrier for oxygen release under various temperatures and morphologies, aligning with Density Functional Theory (DFT) analysis. Furthermore, the model's versatility is evidenced by its applicability to a wide range of metal oxides, including ceria-zirconia solid solutions, manganese oxide, and iron oxide, suggesting a broad potential for universal application. The unveiled dynamics of oxygen migration and release provide a theoretical foundation for refining the design of functional metal oxides and lay the groundwork for a more precise assessment of their oxygen reactivity.

Abstract Image

开发动态氧气迁移-释放模型,加深对 Ce 材料反应性的理解
氧原子在固体氧化物中的迁移会对材料特性产生深远的影响,但目前还没有一个严格的概念框架来量化动态迁移。为了弥补这一缺陷,我们利用微分元法和全面的数学证明,建立了一个动态氧迁移-释放模型。这个新颖的模型阐明了金属氧化物的氧释放率与氧释放量之间的指数衰减关系。我们对模型进行了改进,以区分内部(大块)氧的迁移和表面氧的反应,并对与每个迁移过程相关的能量障碍进行了实验验证。以 CeO2 为例,我们的模型预测并证实了不同温度和形态下氧气释放的能量障碍,与密度泛函理论(DFT)的分析结果一致。此外,该模型还适用于多种金属氧化物,包括铈-氧化锆固溶体、氧化锰和氧化铁,这证明了该模型的多功能性,具有广泛的普遍应用潜力。揭示的氧迁移和释放动力学为完善功能金属氧化物的设计提供了理论基础,并为更精确地评估其氧反应性奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信