Dustin Kenefake , Rahul Kakodkar , Sahithi S. Akundi , Moustafa Ali , Efstratios N. Pistikopoulos
{"title":"A multiparametric approach to accelerating ReLU neural network based model predictive control","authors":"Dustin Kenefake , Rahul Kakodkar , Sahithi S. Akundi , Moustafa Ali , Efstratios N. Pistikopoulos","doi":"10.1016/j.conengprac.2024.106041","DOIUrl":null,"url":null,"abstract":"<div><p>Model Predictive Control (MPC) is a wide spread advanced process control methodology for optimization based control of multi-input and multi-output processes systems. Typically, a surrogate model of the process dynamics is utilized to predict the future states of a process as a function of input actions and an initial state. The predictive model is often a linear model, such as a state space model, due to the computational burden of the resulting optimization problem when utilizing nonlinear models. Recently, rectified linear unit (ReLU) based neural networks (NN) were shown to be mixed integer linear representable, thus allowing their incorporation into mixed integer programming (MIP) frameworks. However, the resulting MIP-based MPC problems are often computationally intractable to solve in real-time. The computational intractability of the reformulated NN-based optimization models is typically addressed in the literature by applying some form of bounds tightening approach. However, this in itself may have a large computational cost. In this work, a novel bound tightening procedure based on a multiparametric (MP) programming formulation of the corresponding MIP reformulated MPC optimization problems is proposed. Which tightening only needs to be computed and applied once-and-offline, thereby significantly improving the computational performance of the MPC in real-time. Some aspects of the effect of regularization during NN regression on the computational difficulty of these optimization problems are also investigated in conjunction with the proposed a priori bounds-tightening approach. The proposed method is compared to the base case without the parametric tightening procedure, as well as NN regularization through two optimal control case studies: (1) A ReLU NN-based MPC of an unstable nonlinear chemostat and, (2) a ReLU NN-based MPC of a nonlinear continuously stirred tank reactor (CSTR). Significant reductions in average time of 99.96% and 91.90% are observed, for the chemostat NN based MPC and CSTR NN based MPC, respectively.</p></div>","PeriodicalId":50615,"journal":{"name":"Control Engineering Practice","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Control Engineering Practice","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967066124002004","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Model Predictive Control (MPC) is a wide spread advanced process control methodology for optimization based control of multi-input and multi-output processes systems. Typically, a surrogate model of the process dynamics is utilized to predict the future states of a process as a function of input actions and an initial state. The predictive model is often a linear model, such as a state space model, due to the computational burden of the resulting optimization problem when utilizing nonlinear models. Recently, rectified linear unit (ReLU) based neural networks (NN) were shown to be mixed integer linear representable, thus allowing their incorporation into mixed integer programming (MIP) frameworks. However, the resulting MIP-based MPC problems are often computationally intractable to solve in real-time. The computational intractability of the reformulated NN-based optimization models is typically addressed in the literature by applying some form of bounds tightening approach. However, this in itself may have a large computational cost. In this work, a novel bound tightening procedure based on a multiparametric (MP) programming formulation of the corresponding MIP reformulated MPC optimization problems is proposed. Which tightening only needs to be computed and applied once-and-offline, thereby significantly improving the computational performance of the MPC in real-time. Some aspects of the effect of regularization during NN regression on the computational difficulty of these optimization problems are also investigated in conjunction with the proposed a priori bounds-tightening approach. The proposed method is compared to the base case without the parametric tightening procedure, as well as NN regularization through two optimal control case studies: (1) A ReLU NN-based MPC of an unstable nonlinear chemostat and, (2) a ReLU NN-based MPC of a nonlinear continuously stirred tank reactor (CSTR). Significant reductions in average time of 99.96% and 91.90% are observed, for the chemostat NN based MPC and CSTR NN based MPC, respectively.
期刊介绍:
Control Engineering Practice strives to meet the needs of industrial practitioners and industrially related academics and researchers. It publishes papers which illustrate the direct application of control theory and its supporting tools in all possible areas of automation. As a result, the journal only contains papers which can be considered to have made significant contributions to the application of advanced control techniques. It is normally expected that practical results should be included, but where simulation only studies are available, it is necessary to demonstrate that the simulation model is representative of a genuine application. Strictly theoretical papers will find a more appropriate home in Control Engineering Practice''s sister publication, Automatica. It is also expected that papers are innovative with respect to the state of the art and are sufficiently detailed for a reader to be able to duplicate the main results of the paper (supplementary material, including datasets, tables, code and any relevant interactive material can be made available and downloaded from the website). The benefits of the presented methods must be made very clear and the new techniques must be compared and contrasted with results obtained using existing methods. Moreover, a thorough analysis of failures that may happen in the design process and implementation can also be part of the paper.
The scope of Control Engineering Practice matches the activities of IFAC.
Papers demonstrating the contribution of automation and control in improving the performance, quality, productivity, sustainability, resource and energy efficiency, and the manageability of systems and processes for the benefit of mankind and are relevant to industrial practitioners are most welcome.