{"title":"Tamoxifen-induced alterations in the expression of connexin 43 in the chicken ovary","authors":"","doi":"10.1016/j.theriogenology.2024.08.011","DOIUrl":null,"url":null,"abstract":"<div><p>Connexin 43 (Cx43) is a gap junction protein that participates in small molecule exchange between adjacent cells. It is a predominant Cx within the mammalian ovary, where is associated with proper follicle development. The expression and regulation of Cx43 in the chicken ovary is largely unknown. The aim of the present study was to examine the expression of the Cx43 gene (<em>GJA1</em>) and protein as well as the immunolocalization of Cx43 in the laying hen ovary in relation to follicle development, and to examine how tamoxifen (TMX; an estrogen receptor modulator) treatment affects these factors. qRT-PCR and western blotting demonstrated differences in Cx43 mRNA transcript and protein abundances in ovarian white follicles, yellowish follicles, small yellow follicles, and the largest yellow preovulatory follicles (F3–F1). In general, Cx43 was more abundant in hierarchical than prehierarchical follicles and in granulosa cells compared with theca cells. Further, the response to TMX treatment depended on the stage of follicle development and the layer of the follicular wall. Ovarian regression following TMX treatment was accompanied by an increase in Cx43 expression in most ovarian tissues, which may impact the formation and function of Cx43 hemichannels. Overall, our results showed, for the first time, the differences in Cx43 mRNA and protein levels between ovarian follicles, suggesting the potential involvement of this gap junction protein in the regulation of ovarian follicle development and function. In addition, the results indicate a possible role for estradiol in regulation of Cx43 transcription and/or translation in the chicken ovary. Understanding the contribution of Cx43 in mechanisms underlying ovarian follicle development may be of considerable importance for poultry egg production.</p></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0093691X24003315/pdfft?md5=68aacbd5df5e0c17de55d318302b7735&pid=1-s2.0-S0093691X24003315-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X24003315","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Connexin 43 (Cx43) is a gap junction protein that participates in small molecule exchange between adjacent cells. It is a predominant Cx within the mammalian ovary, where is associated with proper follicle development. The expression and regulation of Cx43 in the chicken ovary is largely unknown. The aim of the present study was to examine the expression of the Cx43 gene (GJA1) and protein as well as the immunolocalization of Cx43 in the laying hen ovary in relation to follicle development, and to examine how tamoxifen (TMX; an estrogen receptor modulator) treatment affects these factors. qRT-PCR and western blotting demonstrated differences in Cx43 mRNA transcript and protein abundances in ovarian white follicles, yellowish follicles, small yellow follicles, and the largest yellow preovulatory follicles (F3–F1). In general, Cx43 was more abundant in hierarchical than prehierarchical follicles and in granulosa cells compared with theca cells. Further, the response to TMX treatment depended on the stage of follicle development and the layer of the follicular wall. Ovarian regression following TMX treatment was accompanied by an increase in Cx43 expression in most ovarian tissues, which may impact the formation and function of Cx43 hemichannels. Overall, our results showed, for the first time, the differences in Cx43 mRNA and protein levels between ovarian follicles, suggesting the potential involvement of this gap junction protein in the regulation of ovarian follicle development and function. In addition, the results indicate a possible role for estradiol in regulation of Cx43 transcription and/or translation in the chicken ovary. Understanding the contribution of Cx43 in mechanisms underlying ovarian follicle development may be of considerable importance for poultry egg production.
期刊介绍:
Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.