{"title":"Leveraging social computing for epidemic surveillance: A case study","authors":"Bilal Tahir , Muhammad Amir Mehmood","doi":"10.1016/j.bdr.2024.100483","DOIUrl":null,"url":null,"abstract":"<div><p>Social media platforms have become a popular source of information for real-time monitoring of events and user behavior. In particular, Twitter provides invaluable information related to diseases and public health to build real-time disease surveillance systems. Effective use of such social media platforms for public health surveillance requires data-driven AI models which are hindered by the difficult, expensive, and time-consuming task of collecting high-quality and large-scale datasets. In this paper, we build and analyze the Epidemic TweetBank (EpiBank) dataset containing 271 million English tweets related to six epidemic-prone diseases COVID19, Flu, Hepatitis, Dengue, Malaria, and HIV/AIDs. For this purpose, we develop a tool of ESS-T (Epidemic Surveillance Study via Twitter) which collects tweets according to provided input parameters and keywords. Also, our tool assigns location to tweets with 95% accuracy value and performs analysis of collected tweets focusing on temporal distribution, spatial patterns, users, entities, sentiment, and misinformation. Leveraging ESS-T, we build two geo-tagged datasets of EpiBank-global and EpiBank-Pak containing 86 million tweets from 190 countries and 2.6 million tweets from Pakistan, respectively. Our spatial analysis of EpiBank-global for COVID19, Malaria, and Dengue indicates that our framework correctly identifies high-risk epidemic-prone countries according to World Health Organization (WHO) statistics.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000583","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Social media platforms have become a popular source of information for real-time monitoring of events and user behavior. In particular, Twitter provides invaluable information related to diseases and public health to build real-time disease surveillance systems. Effective use of such social media platforms for public health surveillance requires data-driven AI models which are hindered by the difficult, expensive, and time-consuming task of collecting high-quality and large-scale datasets. In this paper, we build and analyze the Epidemic TweetBank (EpiBank) dataset containing 271 million English tweets related to six epidemic-prone diseases COVID19, Flu, Hepatitis, Dengue, Malaria, and HIV/AIDs. For this purpose, we develop a tool of ESS-T (Epidemic Surveillance Study via Twitter) which collects tweets according to provided input parameters and keywords. Also, our tool assigns location to tweets with 95% accuracy value and performs analysis of collected tweets focusing on temporal distribution, spatial patterns, users, entities, sentiment, and misinformation. Leveraging ESS-T, we build two geo-tagged datasets of EpiBank-global and EpiBank-Pak containing 86 million tweets from 190 countries and 2.6 million tweets from Pakistan, respectively. Our spatial analysis of EpiBank-global for COVID19, Malaria, and Dengue indicates that our framework correctly identifies high-risk epidemic-prone countries according to World Health Organization (WHO) statistics.