Leveraging social computing for epidemic surveillance: A case study

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Bilal Tahir , Muhammad Amir Mehmood
{"title":"Leveraging social computing for epidemic surveillance: A case study","authors":"Bilal Tahir ,&nbsp;Muhammad Amir Mehmood","doi":"10.1016/j.bdr.2024.100483","DOIUrl":null,"url":null,"abstract":"<div><p>Social media platforms have become a popular source of information for real-time monitoring of events and user behavior. In particular, Twitter provides invaluable information related to diseases and public health to build real-time disease surveillance systems. Effective use of such social media platforms for public health surveillance requires data-driven AI models which are hindered by the difficult, expensive, and time-consuming task of collecting high-quality and large-scale datasets. In this paper, we build and analyze the Epidemic TweetBank (EpiBank) dataset containing 271 million English tweets related to six epidemic-prone diseases COVID19, Flu, Hepatitis, Dengue, Malaria, and HIV/AIDs. For this purpose, we develop a tool of ESS-T (Epidemic Surveillance Study via Twitter) which collects tweets according to provided input parameters and keywords. Also, our tool assigns location to tweets with 95% accuracy value and performs analysis of collected tweets focusing on temporal distribution, spatial patterns, users, entities, sentiment, and misinformation. Leveraging ESS-T, we build two geo-tagged datasets of EpiBank-global and EpiBank-Pak containing 86 million tweets from 190 countries and 2.6 million tweets from Pakistan, respectively. Our spatial analysis of EpiBank-global for COVID19, Malaria, and Dengue indicates that our framework correctly identifies high-risk epidemic-prone countries according to World Health Organization (WHO) statistics.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000583","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Social media platforms have become a popular source of information for real-time monitoring of events and user behavior. In particular, Twitter provides invaluable information related to diseases and public health to build real-time disease surveillance systems. Effective use of such social media platforms for public health surveillance requires data-driven AI models which are hindered by the difficult, expensive, and time-consuming task of collecting high-quality and large-scale datasets. In this paper, we build and analyze the Epidemic TweetBank (EpiBank) dataset containing 271 million English tweets related to six epidemic-prone diseases COVID19, Flu, Hepatitis, Dengue, Malaria, and HIV/AIDs. For this purpose, we develop a tool of ESS-T (Epidemic Surveillance Study via Twitter) which collects tweets according to provided input parameters and keywords. Also, our tool assigns location to tweets with 95% accuracy value and performs analysis of collected tweets focusing on temporal distribution, spatial patterns, users, entities, sentiment, and misinformation. Leveraging ESS-T, we build two geo-tagged datasets of EpiBank-global and EpiBank-Pak containing 86 million tweets from 190 countries and 2.6 million tweets from Pakistan, respectively. Our spatial analysis of EpiBank-global for COVID19, Malaria, and Dengue indicates that our framework correctly identifies high-risk epidemic-prone countries according to World Health Organization (WHO) statistics.

Abstract Image

利用社交计算进行流行病监测:案例研究
社交媒体平台已成为实时监控事件和用户行为的热门信息来源。特别是,Twitter 为建立实时疾病监测系统提供了与疾病和公共卫生相关的宝贵信息。有效利用此类社交媒体平台进行公共卫生监测需要数据驱动的人工智能模型,而收集高质量和大规模数据集的工作难度大、成本高、耗时长,阻碍了人工智能模型的发展。在本文中,我们建立并分析了 Epidemic TweetBank(EpiBank)数据集,其中包含与 COVID19、流感、肝炎、登革热、疟疾和艾滋病毒/艾滋病六种流行病相关的 2.71 亿条英文推文。为此,我们开发了一个 ESS-T 工具(通过 Twitter 进行流行病监测研究),该工具可根据提供的输入参数和关键词收集推文。此外,我们的工具还能以 95% 的准确率为推文分配位置,并对收集到的推文进行分析,重点关注时间分布、空间模式、用户、实体、情感和错误信息。利用 ESS-T,我们建立了 EpiBank-global 和 EpiBank-Pak 两个地理标记数据集,分别包含来自 190 个国家的 8600 万条推文和来自巴基斯坦的 260 万条推文。我们针对 COVID19、疟疾和登革热对 EpiBank-global 进行的空间分析表明,根据世界卫生组织(WHO)的统计数据,我们的框架能正确识别流行病高发国家。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信