A survey of complex generalized weighing matrices and a construction of quantum error-correcting codes

IF 0.7 3区 数学 Q2 MATHEMATICS
{"title":"A survey of complex generalized weighing matrices and a construction of quantum error-correcting codes","authors":"","doi":"10.1016/j.disc.2024.114201","DOIUrl":null,"url":null,"abstract":"<div><p>Some combinatorial designs, such as Hadamard matrices, have been extensively researched and are familiar to readers across the spectrum of Science and Engineering. They arise in diverse fields such as cryptography, communication theory, and quantum computing. Objects like this also lend themselves to compelling mathematics problems, such as the Hadamard conjecture. However, complex generalized weighing matrices, which generalize Hadamard matrices, have not received anything like the same level of scrutiny. Motivated by an application to the construction of quantum error-correcting codes, which we outline in the latter sections of this paper, we survey the existing literature on complex generalized weighing matrices. We discuss and extend upon the known existence conditions and constructions, and compile known existence results for small parameters. Using these matrices we construct Hermitian self orthogonal codes over finite fields of square order, and consequently some interesting quantum codes are constructed to demonstrate the value of complex generalized weighing matrices.</p></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0012365X24003327/pdfft?md5=529c4d63c13ac71c4519138cdb73c99c&pid=1-s2.0-S0012365X24003327-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24003327","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Some combinatorial designs, such as Hadamard matrices, have been extensively researched and are familiar to readers across the spectrum of Science and Engineering. They arise in diverse fields such as cryptography, communication theory, and quantum computing. Objects like this also lend themselves to compelling mathematics problems, such as the Hadamard conjecture. However, complex generalized weighing matrices, which generalize Hadamard matrices, have not received anything like the same level of scrutiny. Motivated by an application to the construction of quantum error-correcting codes, which we outline in the latter sections of this paper, we survey the existing literature on complex generalized weighing matrices. We discuss and extend upon the known existence conditions and constructions, and compile known existence results for small parameters. Using these matrices we construct Hermitian self orthogonal codes over finite fields of square order, and consequently some interesting quantum codes are constructed to demonstrate the value of complex generalized weighing matrices.

复杂广义称重矩阵概览与量子纠错码的构建
哈达玛矩阵等一些组合设计已得到广泛研究,为科学和工程领域的读者所熟悉。它们出现在密码学、通信理论和量子计算等不同领域。类似的对象也会引发引人注目的数学问题,如 Hadamard 猜想。然而,将 Hadamard 矩阵广义化的复杂广义称重矩阵却没有受到同等程度的关注。在本文后几节中,我们将概述量子纠错码的构造应用,受此激励,我们调查了关于复杂广义权重矩阵的现有文献。我们讨论并扩展了已知的存在条件和构造,并汇编了小参数的已知存在结果。利用这些矩阵,我们构建了有限域上的平方阶赫米自正交码,并由此构建了一些有趣的量子码,以证明复数广义权重矩阵的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Mathematics
Discrete Mathematics 数学-数学
CiteScore
1.50
自引率
12.50%
发文量
424
审稿时长
6 months
期刊介绍: Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory. Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信