Polymer-grafted materials as surface-engineered adsorbents for water purification

Q3 Materials Science
Harshada B. Garud , Pranoti H. Patil , Vidya V. Kulkarni , Vilas A. Kalantre , Shivaji H. Burungale , Sushilkumar A. Jadhav
{"title":"Polymer-grafted materials as surface-engineered adsorbents for water purification","authors":"Harshada B. Garud ,&nbsp;Pranoti H. Patil ,&nbsp;Vidya V. Kulkarni ,&nbsp;Vilas A. Kalantre ,&nbsp;Shivaji H. Burungale ,&nbsp;Sushilkumar A. Jadhav","doi":"10.1016/j.jciso.2024.100122","DOIUrl":null,"url":null,"abstract":"<div><p>This review aims to explore recent advancements in polymer-grafted materials that have emerged as effective adsorbents for the removal of contaminants from wastewater. The most significant environmental issues affecting public health are the presence of dyes, heavy metals, and metalloids in wastewater discharged by various industries. Unfortunately, traditional techniques for treating wastewater are incapable of removing dyes and heavy metals. Due to enhanced capabilities, larger surface areas, greater stability, adjustable properties, and cost-effectiveness, polymer-grafted nanomaterials (PGNs) have attracted the attention of researchers for water purification. Surface engineering of materials with the use of polymers improves greatly their colloidal stability and pollutant adsorption capacity. This study investigates different parameters such as adsorption capacity, pH, and duration in recently reported papers where polymer-grafted adsorbents are developed. The review concludes by offering an overview of recent advancements in the field and proposing potential avenues for future research on related topics.</p></div>","PeriodicalId":73541,"journal":{"name":"JCIS open","volume":"15 ","pages":"Article 100122"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666934X24000229/pdfft?md5=9fd5a38da833812878ad1cff233d550c&pid=1-s2.0-S2666934X24000229-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCIS open","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666934X24000229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0

Abstract

This review aims to explore recent advancements in polymer-grafted materials that have emerged as effective adsorbents for the removal of contaminants from wastewater. The most significant environmental issues affecting public health are the presence of dyes, heavy metals, and metalloids in wastewater discharged by various industries. Unfortunately, traditional techniques for treating wastewater are incapable of removing dyes and heavy metals. Due to enhanced capabilities, larger surface areas, greater stability, adjustable properties, and cost-effectiveness, polymer-grafted nanomaterials (PGNs) have attracted the attention of researchers for water purification. Surface engineering of materials with the use of polymers improves greatly their colloidal stability and pollutant adsorption capacity. This study investigates different parameters such as adsorption capacity, pH, and duration in recently reported papers where polymer-grafted adsorbents are developed. The review concludes by offering an overview of recent advancements in the field and proposing potential avenues for future research on related topics.

Abstract Image

聚合物接枝材料作为用于水净化的表面工程吸附剂
本综述旨在探讨聚合物接枝材料的最新进展,这些材料已成为去除废水中污染物的有效吸附剂。影响公众健康的最重要环境问题是各行各业排放的废水中存在染料、重金属和类金属。遗憾的是,传统的废水处理技术无法去除染料和重金属。聚合物接枝纳米材料(PGNs)具有更强的能力、更大的表面积、更高的稳定性、可调节的特性和成本效益,因此在水净化方面吸引了研究人员的关注。利用聚合物对材料进行表面工程处理可大大提高其胶体稳定性和污染物吸附能力。本研究调查了最近报道的开发聚合物接枝吸附剂的论文中的不同参数,如吸附容量、pH 值和持续时间。综述最后概述了该领域的最新进展,并提出了未来相关主题研究的潜在途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
JCIS open
JCIS open Physical and Theoretical Chemistry, Colloid and Surface Chemistry, Surfaces, Coatings and Films
CiteScore
4.10
自引率
0.00%
发文量
0
审稿时长
36 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信