Protein folding and quality control during nuclear transport

IF 6 2区 生物学 Q1 CELL BIOLOGY
Sunanda Mallik , Dylan Poch , Sophia Burick , Christian Schlieker
{"title":"Protein folding and quality control during nuclear transport","authors":"Sunanda Mallik ,&nbsp;Dylan Poch ,&nbsp;Sophia Burick ,&nbsp;Christian Schlieker","doi":"10.1016/j.ceb.2024.102407","DOIUrl":null,"url":null,"abstract":"<div><p>The spatial separation of protein synthesis from the compartmental destiny of proteins led to the evolution of transport systems that are efficient and yet highly specific. Co-translational transport has emerged as a strategy to avoid cytosolic aggregation of folding intermediates and the need for energy-consuming unfolding strategies to enable transport through narrow conduits connecting compartments. While translation and compartmental translocation are at times tightly coordinated, we know very little about the temporal coordination of translation, protein folding, and nuclear import. Here, we consider the implications of co-translational engagement of nuclear import machinery. We propose that the dynamic interplay of karyopherins and intrinsically disordered nucleoporins create a favorable protein folding environment for cargo en route to the nuclear compartment while maintaining a barrier function of the nuclear pore complex. Our model is discussed in the context of neurological disorders that are tied to defects in nuclear transport and protein quality control.</p></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"90 ","pages":"Article 102407"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067424000863","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The spatial separation of protein synthesis from the compartmental destiny of proteins led to the evolution of transport systems that are efficient and yet highly specific. Co-translational transport has emerged as a strategy to avoid cytosolic aggregation of folding intermediates and the need for energy-consuming unfolding strategies to enable transport through narrow conduits connecting compartments. While translation and compartmental translocation are at times tightly coordinated, we know very little about the temporal coordination of translation, protein folding, and nuclear import. Here, we consider the implications of co-translational engagement of nuclear import machinery. We propose that the dynamic interplay of karyopherins and intrinsically disordered nucleoporins create a favorable protein folding environment for cargo en route to the nuclear compartment while maintaining a barrier function of the nuclear pore complex. Our model is discussed in the context of neurological disorders that are tied to defects in nuclear transport and protein quality control.

核运输过程中的蛋白质折叠和质量控制
蛋白质合成在空间上与蛋白质的分区命运分离,导致了高效且高度特异的运输系统的进化。共转运作为一种策略应运而生,它可以避免折叠中间产物在细胞质中聚集,也不需要耗费能量的解折策略,从而能够通过连接隔室的狭窄通道进行运输。虽然翻译和区室转运有时会紧密协调,但我们对翻译、蛋白质折叠和核导入的时间协调知之甚少。在此,我们探讨了核导入机制共同翻译参与的影响。我们提出,在维持核孔复合体的屏障功能的同时,核仁蛋白和内在无序核蛋白的动态相互作用为运往核区的货物创造了有利的蛋白质折叠环境。我们将结合与核转运和蛋白质质量控制缺陷有关的神经系统疾病来讨论我们的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Current Opinion in Cell Biology
Current Opinion in Cell Biology 生物-细胞生物学
CiteScore
14.60
自引率
1.30%
发文量
79
审稿时长
93 days
期刊介绍: Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings. COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信